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ABSTRACT
Due to the popularity of smart contracts in the modern financial
ecosystem, there has been growing interest in formally verifying
their correctness and security properties. Most existing techniques
in this space focus on common vulnerabilities like arithmetic over-
flows and perform verification by leveraging contract invariants
(i.e., logical formulas hold at transaction boundaries). In this pa-
per, we propose a new technique, based on deep reinforcement
learning, for automatically learning contract invariants that are
useful for proving arithmetic safety. Our method incorporates an
off-line training phase in which the verifier uses its own verification
attempts to learn a policy for contract invariant generation. This
learned (neural) policy is then used at verification time to predict
likely invariants that are also useful for proving arithmetic safety.
We implemented this idea in a tool called Cider and incorporated
it into an existing verifier (based on refinement type checking)
for proving arithmetic safety. Our evaluation shows that Cider
improves both the quality of the inferred invariants as well as in-
ference time, leading to faster verification and hardened contracts
with fewer run-time assertions.
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1 INTRODUCTION
As decentralized cryptocurrencies grow in popularity, ensuring
the security of smart contracts is increasingly becoming a pressing
concern. As a result, there has been a whirlwind of research interest
in finding security vulnerabilities of programs written in Solidity,
which is currently the most popular programming language for
∗Both authors contributed equally to the paper.
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smart contract development. Because many serious bugs are caused
by common vulnerabilities like reentrancy and arithmetic over-
flows, much of the research in this space focuses on detecting such
common vulnerabilities [2, 12, 24, 27].

Although existing research has attacked verification of smart
contracts from different angles, a common theme among several
threads of research is that they rely on a so-called contract invariant,
which is a logical formula over storage variables1 that always holds
at transaction boundaries [2, 17, 18, 25, 29]. For example, when
generating verification conditions for a given method, the contract
invariant can be assumed as part of the pre-condition. Existing work
has shown that inference of contract invariants is important for
successful verification and elimination of false positives reported
by the analyzer [12, 24, 27].

Motivated by the importance of contract invariants in smart
contract analysis, this paper presents a new technique for infer-
ring such contract invariants. Our method is based on machine
learning and primarily targets contract invariants that are useful
for discharging arithmetic overflows, one of the most common and
nefarious security vulnerabilities in Solidity programs. The use of
machine learning in this context allows our approach to consider
a rich class of contract invariants, while also scaling to real-world
Solidity programs. Since the candidate invariants predicted by the
learnt ML model are independently verified, our method is guaran-
teed to return valid contract invariants.

As in other verification contexts, a central problem to applying
machine learning in this space is the paucity of labeled training data
in the form of program/invariant pairs. Inspired by prior work [3, 21,
22], we address this problem using off-line reinforcement learning
(RL), wherein themethod learns from the underlying verifier’s failed
and successful verification attempts. By starting with a random
initial policy and updating it based on feedback from the verifier,
we can gradually learn a model that is capable of predicting contract
invariants that are useful for proving arithmetic safety.

In this paper, we show how to formulate the contract invariant
generation problem as a Markov Decision Process (MDP) (a nec-
essary pre-condition for applying RL to any problem) and use the
policy gradient algorithm to learn a (neural) policy that induces
a probability distribution over candidate invariants. Notably, we
design our reward function to take into account not only whether
a formula is a valid contract invariant but also to consider how
1A storage variable is one that is stored on the Blockchain.
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useful it is for discharging the generated verification conditions. To
make the problem of learning tractable, we propose an arithmetic
dependency graph (ADG) abstraction of smart contracts and utilize a
graph neural network (GNN) architecture to encode this abstraction
into a vector. Our neural policy also incorporates a decoder network
that can be used to map vectors in R𝑛 to program-specific terms
that should appear as part of the contract invariant.

In addition to formulating the contract invariant inference prob-
lem as a deep reinforcement learning problem, another contribution
of this paper is to use the learned neural policy to implement the
type inference backend of SolType, a refinement type system de-
signed for checking for arithmetic safety. Our approach uses the
learned policy to perform backtracking search over candidate in-
variants in decreasing order of likelihood and tries to find a valid
type assignment that can be used to discharge as many arithmetic
overflows as possible.

We have implemented the proposed approach in a tool called
Cider and compare it against two baselines for contract invariant
inference. One of these baselines utilizes a CHC solver [1] and the
other one is an instantiation of monomial predicate abstraction [7,
10]. We evaluate the effectiveness of these techniques both in terms
of the quality of the inferred invariants as well as inference time.
Our results show that our approach reduces both verification time
as well the number of required run-time checks.

To summarize, the contributions of this paper include:
• a formulation of the contract invariant generation problem
as a Markov Decision Process
• a technique for finding an optimal policy for this MDP, incor-
porating a new program abstraction and an encoder-decoder-
style neural policy
• an implementation of the proposed approach in a tool called
Cider, which is incorporated as the type inference engine
of an existing tool, and its evaluation in the context of arith-
metic overflow checking

2 BACKGROUND ON CONTRACT
INVARIANTS AND SOLTYPE

Because our technique builds on prior work [27] for discharging
arithmetic overflows using a refinement type system, this section
provides background on contract invariants as well as aspects of
SolType [27] that are relevant to our proposed technique.

2.1 Contract Invariants for Overflow Checking
To gain some intuition about contract invariants and why they
are necessary for overflow checking, consider the Solidity contract
shown in Figure 1. This contract, called ExampleToken, uses a storage
variable called balances that maps the address of each account to their
balance. This contract also uses another variable called totalSupply,
which tracks the number of available tokens. As standard, functions
mint and burn produce and consume tokens respectively and update
storage variables balances and totalSupply accordingly.

While the code shown in Figure 1 is free of arithmetic overflow
errors, proving arithmetic safety by considering each function in
isolation is actually infeasible. For instance, consider the addition
at line 20. Since there is no overflow check guarding the update to
balances the addition operation at line appears, at first glance, to

1 contract ExampleToken {

2 uint initialSupply = 100000000 * (10 ** 18);

3 uint totalSupply;

4 mapping(address => uint) balances;

6 ExampleToken() {

7 totalSupply = initialSupply;

8 balances[msg.sender] = totalSupply;

9 }

11 function burn(uint _value) {

12 require(_value <= balances[msg.sender]);
13 balances[msg.sender] = balances[msg.sender] - _value;

14 totalSupply = totalSupply - _value;

15 }

17 function mint(uint _to, uint _value) {

18 require(totalSupply + _value >= totalSupply);

19 totalSupply = totalSupply + _value;

20 balances[_to] = balances[_to] + _value;

21 }

22 }

Figure 1: An example Solidity contract.

be potentially unsafe. To see why it is safe, we need to consider
the relationship between totalSupply and balances: Because totalSuppy
is equal to the sum of all values stored in balances, the require

annotation at line 18 (which performs a run-time check) also ensures
the safety of the addition operation at line 20. However, without
knowing this global invariant, we cannot prove the safety of line
20 by analyzing function mint in isolation.

Thus, as this example illustrates, discharging arithmetic over-
flows often requires having a so-called contract invariant, which is a
logical formula that holds at the beginning of each transaction. For
instance, for our running example, the following contract invariant
is useful for proving overflow safety:∑︁

𝑖

balances[𝑖] = totalSupply. (1)

2.2 Refinement Type System for Solidity
SolType is a refinement type system for Solidity that is designed
to prove arithmetic safety of smart contracts. The key observation
behind SolType is that, in order to be useful for discharging over-
flows, the type system needs to relate values of scalar variables to
aggregations over complex data structures (including deeply nested
mappings). Based on this observation, type refinements (i.e., logical
qualifiers) in SolType provide a rich vocabulary for performing
aggregations over Solidity data structures. Specifically, a refine-
ment type in SolType is of the form {𝜈 : 𝑇 | Φ} where 𝑇 is a base
type and Φ is a logical formula that belongs to the grammar shown
in Figure 2. Note that terms in this type system allow flattening
mappings (Flatten), performing projections onto specific fields of
a struct stored in mappings (Fld𝑓 ), and summing over all elements
in a mapping (Sum).

Using SolType, we can prove the arithmetic safety of our running
example from Figure 1 by expressing the contract invariant from
Equation 1 as the following type annotation on balances:

balances : {Map(UInt) | Sum(𝜈) = totalSupply}. (2)
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□ ∈ {≤,=} comparison operation
⊕ ∈ {+,−,×, /} arithmetic operation
Φ ::= boolean formula

| true | false boolean constants
| 𝐴□𝐴 comparisons
| ¬Φ negation
| Φ ∧ Φ conjunction

𝑀 ::= mapping expression
| 𝑥 mapping variable
| Flatten(𝑀) flattening
| Fld𝑓 (𝑀) field projection

𝐴 ::= arithmetic expression
| 𝑛 integer constants
| 𝑥 variable
| 𝐴1 ⊕ 𝐴2 binary operation
| 𝐴1 [𝐴2] data structure access
| .𝑥 struct field selector
| Sum(𝑀) sum of mapping
| MaxInt maximum machine integer constant

Figure 2: Refinement terms used to construct contract invari-
ants in SolType [27].

Given just this type annotation, the underlying type system can
then prove the safety of all arithmetic operations in Figure 1.

2.3 Type Inference with Soft Constraints
SolType also provides capabilities for automatically inferring re-
finement type annotations, including those on storage variables.
The type inference problem in this context can be formulated as an
instance of “MaxCHC”, the optimization variant of the Constrained
Horn Clause (CHC) solving problem [11]. In particular, the basic
idea is to introduce second-order variables 𝑉 that represent un-
known refinement type annotations and then add hard and soft
constraints over these variables. Here, the hard constraints encode
that the inferred type annotation must be a valid one — e.g., the
annotation on a storage variable must correspond to a contract
invariant that is preserved by all transactions. On the other hand,
soft constraints correspond to properties that we would like to
prove, such as the absence of arithmetic overflows. Then, the type
inference problem is to find a mapping from each variable 𝑣 ∈ 𝑉
to a term in Figure 2 such that all hard constraints and as many as
possible soft constraints are satisfied.

Definition 2.1 (Type Inference with Soft Constraints). Let 𝐶 =

𝐶ℎ ∪ 𝐶𝑠 be the set of typing constraints generated by SolType’s
constraint generation procedure. The type inference problem is to
infer a typing assignment such that (1) all hard constraints 𝐶ℎ are
satisfied; and (2) the number of satisfied soft constraints in 𝐶𝑠 is
maximized.

Since performing type inference for local variables is often quite
easy in Solidity, the key challenge of type inference is to find suit-
able type annotations on storage variables. Furthermore, because
type annotations on storage variables correspond to contract in-
variants, we can also formulate the problem of inferring contract

invariants as the MaxCHC problem outlined in Definition 2.1. Thus,
in the remainder of this paper, we use the terms contract invariant
inference and type inference interchangeably.

2.4 Type Inference Using Reinforcement
Learning

The SolType’s authors implemented a tool called Solid to both
verify and infer contract invariants. However, Solid’s inference
capability is limited by its reliance on existing CHC solvers to infer
unknown refinements. Inspired by how human experts construct
contract invariants, we propose Cider, the first framework for
learning contract invariants using reinforcement learning. A high-
level overview of Cider is illustrated in Figure 3. Specifically, Cider
consists of a training phase and an inference phase.

• During the training phase, an RL agent is trained using a set
of contracts, which are further encoded in our novel arith-
metic dependency graph (ADG) representation. Intuitively,
an ADG distills critical arithmetic-related information from
a smart contract. Specifically, the agent repeatedly samples
a contract from the training set and proposes candidate in-
variants to be checked by the Solid verifier. In the presence
of an incorrect invariant, the verifier also provides the agent
with fine-grained feedback on the quality of the proposed
candidates. The agent learns from the feedback and strives
to propose better candidates during the subsequent itera-
tions. The goal of the training phase is to learn a policy that
maximizes the contract invariants in the training set.
• During the inference phase, Cider uses the policy learnt
from the training phase to generate invariants for unseen
contracts. Specifically, based on the ADG representation
of an input contract, the agent proposes a sequence of in-
variants of decreasing likelihood (representing the agent’s
confidence level for each proposed invariant). Then, Cider
searches for an invariant that discharges the largest number
of overflow checks, and returns a hardened contract in which
the operations that can not be proven safe are guarded with
run-time checks.

The next several chapters are organized as follows. In Section Sec-
tion 3, we formulate the contract invariant generation as a rein-
forcement learning problem by giving a MDP formulation, and
illustrating necessary terminology such as states, actions, transi-
tions, and the reward function in our setting. In Section Section 4,
we discuss the details of our neural architecture, including our
ADG abstraction of smart contracts. The algorithm that underlies
the inference phase of Cider is explained in Section Section 5.
Finally, we systematically evaluate the effectiveness of Cider in
Section Section 6.

3 RL FORMULATION FOR CONTRACT
INVARIANT LEARNING

Because our goal is to learn a probability distribution over useful
contract invariants from unlabeled data, we formulate this task as
a reinforcement learning (RL) problem. As RL tasks are typically
stated in terms of aMarkovDecision Process (MDP), we first provide
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Contract
Invariant

RL Agent

Graph Abstraction
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Training Contracts

SOLID
Verifier
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Unseen Contracts
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Invariant Confidence SOLID
Verifier

Hardened Contract

Training

Inference

sum(balances) == totalSupply 0.76

initialSupply <= sum(balances) 0.12

initialSupply + totalSupply 
- sum(balances) == 0

0.05

......

Figure 3: Overview of the Cider framework.

necessary background on this topic and then show how to formulate
our problem as an MDP.

Definition 3.1 (Markov Decision Process). A Markov decision pro-
cess (MDP) can be formalized as a tupleM = (S,A, 𝑟 , 𝑡𝑟 ), where:
• S is a set of states, with 𝑆0 ⊂ 𝑆 as the initial states and 𝑆𝑡 ⊂ 𝑆

as the final states;
• A is a set of actions;
• 𝑟 : S → R is a function mapping each state to a reward;
• 𝑡𝑟 : S×A×S → R is a function that models the probability
of transitioning from one state to another under a given
action.

3.1 MDP Formulation for Contract Invariant
Learning

In order to formulate our problem as anMDP, we next introduce the
notion of a partial contract invariant (PCI), which is a logical formula
containing holes (i.e., missing expressions). More formally, a PCI is
a sequence of grammar symbols (including both terminals and non-
terminals) derived from the grammar of Figure 2. Words containing
only terminals correspond to full contract invariants, and non-
terminals in a word are referred to as holes. For instance, Sum(𝑇 ) ≤
𝑇 is a PCI since the non-terminal 𝑇 has not yet been expanded.
Given a PCI Φ, we write Φ { Φ′ if Φ′ can be obtained from Φ by
expanding a single non-terminal using a grammar production from
Figure 2.

Equipped with this definition of partial contract invariants, we
can now formulate the contract invariant inference problem in
terms of a Markov Decision Process with the following states, ac-
tions, transition, and reward function.

States. In our context, a state 𝑆 is a pair (𝑃,Φ) where 𝑃 is a
Solidity program and Φ is a partial contract invariant. For a given
contract 𝑃 , the initial state consists of 𝑃 and the empty partial
invariant (i.e., a single hole). Furthermore, (𝑃,Φ) is a terminal (final)
state if Φ is a complete contract invariant without any holes.

Actions and transitions. In our setting, actions correspond to
expanding non-terminals in partial contract invariants using the
grammar productions from Figure 2. In particular, applying an
action to a state (𝑃,Φ) yields another state (𝑃,Φ′) such that Φ {
Φ′. Different actions can either expand different non-terminals or
expand the same non-terminal using different grammar productions.
Note that the transition function in our setting is deterministic,
since there is a unique PCI that can be obtained by expanding a
specific occurrence of a non-terminal using a specific grammar
production.

Reward function. The design of the reward function promotes
actions that lead to the construction of a useful contract invariant
and penalizes those that will result in either incorrect “invariants” or
valid but useless invariants. Thus, it takes into account both the hard
and soft typing constraints from the formulation in Definition 2.1.
Specifically, the reward for a state 𝑆 = (𝑃,Φ) is defined as follows:

𝑟 (𝑆) =
{
0 if any hard constraint is violated
𝜍𝑠 (𝑆) otherwise,

where 𝜍𝑠 (𝑆) returns the percentage of soft typing constraints that
are satisfied. Intuitively, we want a proposed invariant to satisfy all
the hard constraints and as many soft constraints as possible. Thus,
the reward function assigns a score of 0 to formulas that violate
the hard constraint, and considers the percentage of satisfied soft
constraints when all hard constraints are satisfied.

3.2 Learning Contract Invariants using RL
Given an MDP, the goal of reinforcement learning is to learn a
policy 𝜋 that will maximize expected reward. Specifically, a policy
is a function 𝜋 (𝑆,𝐴) : S ×A → R that maps state, action pairs to a
probability. A rollout of the policy is a sequence of moves ending in
a terminal state. More formally, a rollout 𝜉 is a sequence of triples
of the form of:

𝜉 = ((𝑆0, 𝐴0, 𝑟0), ..., (𝑆𝑡−1, 𝐴𝑡−1, 𝑟𝑡−1), (𝑆𝑡 , ⊘, ⊘)),
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where 𝑆0 is an initial state, 𝑆𝑡 is a final state, 𝐴𝑖 is sampled from
the policy (denoted by 𝐴𝑖 ∼ 𝜋 (𝑆𝑖 )), 𝑟𝑖 = 𝑟 (𝑆𝑖+1) is the reward, and
𝑆𝑖 = 𝑡𝑟 (𝑆𝑖−1, 𝐴𝑖−1). Based on our MDP formulation, a rollout in our
setting corresponds to the eventual construction of a full contract
invariant. For example, the following sequence could be a rollout
for the program 𝑃 show in Figure 1:

𝜉 = (((𝑃,⋄0),⋄0 → ≤, 0), ((𝑃,⋄1 ≤ ⋄2),⋄1 → totalSupply, 0),
((𝑃, totalSupply ≤ ⋄2),⋄2 → 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦, 0.3),
((𝑃, totalSupply ≤ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦), ⊘, ⊘)),

where ⋄ denotes a hole (i.e., non-terminal) and actions are repre-
sented as rewrite rules ⋄ → 𝑡 for some term 𝑡 .

In this work, we solve the RL problem of learning an optimal
policy using the standard policy gradient technique [26] which finds
an optimal policy 𝜋∗ that maximizes the following expected cumu-
lative reward:

𝐽 (𝜋) = E𝜉∼𝜋

|𝜉 |−1∑︁
𝑖=0

𝑅𝑖

 , 𝑤ℎ𝑒𝑟𝑒 𝑅𝑖 =
|𝜉 |−1∑︁
𝑗=𝑖

𝑟 𝑗 .

The policy gradient technique optimizes this function 𝐽 (𝜋) by com-
puting the gradient of 𝐽 (𝜋) and then repeatedly taking a step in the
direction of the gradient until it converges to a local maximum. In
particular, given a policy 𝜋𝜃 parameterized over 𝜃 , the well-known
policy gradient theorem [26] allows computing the gradient of 𝐽 (𝜋𝜃 )
as follows:

∇𝜃 𝐽 (𝜋𝜃 ) = E𝜉∼𝜋𝜃 ℓ (𝜉) ≈
1
𝑛

𝑛∑︁
𝑘=1

ℓ (𝜉𝑘 ), (3)

where:

ℓ (𝜉) =
|𝜉 |−1∑︁
𝑖=0
∇𝜃𝑅𝑖 =

|𝜉 |−1∑︁
𝑖=0

𝑅𝑖∇𝜃 log𝜋𝜃 (𝑆𝑖 , 𝐴𝑖 ) .

In the next section, we show how to represent such a param-
eterized policy in our setting as a deep neural network with an
encoder-decoder style architecture. Since the parameters of the
policy correspond to the weights of this neural network, we can
optimize this neural network using Equation 3.

4 NEURAL ARCHITECTURE FOR CONTRACT
INVARIANT LEARNING

Recall that states in our MDP formulation from Section Section 3
are pairs of Solidity programs and partial contract invariants, and
the actions are grammar productions (parameterized over the stor-
age variables in the input contract). Since a policy takes as input
a state and outputs an action, we need suitable representations
of such complex states and actions. Our approach utilizes (1) a
compact graph abstraction that captures relevant features of the
smart contract, and (2) an encoder-decoder style neural network
that featurizes states and actions.

Figure 4 illustrates our high-level approach for mapping states to
actions. Specifically, given a Solidity program, we first statically an-
alyze its source code to construct a so-called arithmetic dependency
graph (ADG) that captures its key features relevant for discharging
arithmetic overflows. We then compute a vector encoding of the
ADG by using a graph neural network (GNN) and vectorize the

PCI (which is also part of the state) using a gated recurrent unit
(GRU) network. In particular, because GNNs are designed to gen-
erate vector embeddings for graphs, they are a natural choice for
encoding our ADG abstraction. Furthermore, since we construct
PCIs gradually by expanding each hole with a grammar production,
the GRU architecture (commonly used for encoding sequences) is
a natural choice for encoding PCIs. We refer to the combination
of GNN and GRU as the encoder part of the network. Once we
have a vector encoding of the contract and the PCI, we concatenate
their vector representations and use a decoder network to generate
a probability distribution over actions. In particular, our decoder
network is a feed-forward neural network (FFNN), augmented with
a pointer mechanism [28] for handling the program-specific aspect
of the action space. In the remainder of this section, we discuss the
ADG abstraction and various aspects of the neural architecture in
more detail.

4.1 Arithmetic Dependency Graph Abstraction
While smart contracts typically consist of hundreds of lines of code,
most of this code is actually irrelevant for our goal of proving
arithmetic safety. Hence, instead of representing Solidity programs
using a sequence of tokens or as a control-flow-graph, we instead
propose the arithmetic dependency graph abstraction (ADG) to
capture features that are more relevant to proving arithmetic safety.

Our ADG representation is motivated by the following obser-
vation: invariants that are useful for discharging overflow checks
often relate storage variables that (1) have arithmetic operations
performed on them, and (2) have a data dependence on each other
either directly or indirectly. Based on this observation, our ADG
abstraction encodes both arithmetic- and non-arithmetic-related
data flow between storage variables. More formally, given a pro-
gram 𝑃 , the ADG abstraction is a graph (𝑉 , 𝐸) where vertices 𝑉
correspond to variables used in the program, including both local
and storage variables, and edges 𝐸 encode dependencies between
these variables. In particular, we distinguish between the following
types of edges:
• Decrement/increment edges: A so-called decrement edge
(𝑣,𝑢) indicates that 𝑣 is decremented by 𝑢. Dually, an incre-
ment edge (𝑣,𝑢) indicates that 𝑣 is incremented by 𝑢.
• Data-flow edges: To capture data dependencies beyond
increment and decrement operations, the ADG abstraction
also includes more generic data-flow edges (𝑣,𝑢) indicating
the presence of an assignment where 𝑣 appears on the left-
hand-side and 𝑢 appears on the right-hand-side.

For instance, Figure 5 shows the ADG abstraction for the code
from Figure 1. In this example, there is a data flow edge from
totalSupply to balances due to the assignment in the constructor. Sim-
ilarly, there is an increment edge from the _value parameter of mint
to both totalSupply and balances since they are both incremented by
itvalue in that function.

4.2 Encoder Network
Recall that the goal of the encoder network is to generate a vector
representation of each MDP state. In this subsection, we describe
the GNN used for encoding the ADG abstraction as well as the GRU
network for encoding partial contract invariants.
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Figure 4: Overview of neural architecture.
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Figure 5: Graph abstraction of the example contract in Figure 1.

GNN for Encoding ADGs. Since the standard way to generate
a vector encoding of graphs is via graph neural networks, GNNs
are a natural choice for encoding our ADG abstraction. Given an
ADG 𝐺 = (𝑉 , 𝐸) as input, we train the GNN via a message pass-
ing mechanism that exchanges information between neighboring
nodes to update the vector encoding ℎ𝑣 of each node in 𝑣 ∈ 𝑉 . Let
ℎ𝑙𝑣 denote the vector encoding of node 𝑣 during the 𝑙 ’th message
passing iteration as ℎ𝑙𝑣 . Then, we update the encoding as follows:

ℎ𝑙+1𝑣 = 𝜎 (
∑︁

𝑢∈N𝑣

𝑓 (ℎ𝑙𝑣, ℎ𝑙𝑢 , 𝑒 (𝑣,𝑢))

ℎ0𝑣 = 𝜓 (𝑣),
(4)

Here, N𝑣 is the set of neighboring nodes of 𝑣 , 𝑒 (𝑣,𝑢) is the edge
type (increment, decrement, or data flow), and 𝜎 is an activation
function. Because an ADG has a fixed set of node types (local vs
storage), the initial representation ℎ0𝑣 for a given node 𝑣 is given by
a learnable embedding of its node type 𝜓 (𝑣). Function 𝑓 used in
Equation 4 performs aggregation over the neighboring nodes and
is defined as follows in our setting:

𝑓 (ℎ𝑣, ℎ𝑢 , 𝑒 (𝑣,𝑢)) =𝑊𝑒 (𝑣,𝑢 )ℎ𝑢 ,

where 𝑊𝑒 (𝑣,𝑢 ) is a learnable neural network parameter. Finally,
given the vector encoding ℎ𝑣 of each node, we compute the encod-
ing of the entire ADG as follows:

𝑒𝑛𝑐 (𝐺) = ℎ𝑃 =
1
|𝑉 |

∑︁
𝑣∈𝑉

ℎ𝑣,

GRU for Encoding PCIs. Given a PCI Φ that is represented by a
sequence of actions, we generate its vector encoding 𝑒𝑛𝑐 (Φ) using

a standard GRU network:

𝑒𝑛𝑐 (Φ) = ℎΦ = 𝐺𝑅𝑈 (𝜓 (Φ)), 𝑤ℎ𝑒𝑟𝑒 𝜓 (Φ) = (𝜓 (𝐴0),𝜓 (𝐴1), ...).

Here𝜓 (𝐴) is a learnable embedding for an action 𝐴.

4.3 Decoder Network
In this subsection, we turn our attention to the decoder network,
which maps the output of the encoder network (concatenation of
ℎ𝑃 and ℎΦ from the previous section) to a probability distribution
over actions. The decoder network is a feed-forward neural net-
work augmented with a pointer-like mechanism [28] (to handle our
program-dependent action space).

Given the output ℎ𝑠 of the encoder, the goal of the decoder is to
assign a probability to the set of all available actionsA. To achieve
this goal, we first project ℎ𝑠 to the feature space of the actions using
an FFNN:

ℎ = 𝐹𝐹𝑁𝑁 (ℎ𝑠 ) .
where ℎ is the projected state vector encoding. Then, because the
set of actions varies across different programs, we employ a pointer
mechanism to compute a preference score for every action as fol-
lows:

𝜑 (ℎ,A) = softmax(ΨAℎ +𝑊𝑏ΨA )
𝑤ℎ𝑒𝑟𝑒 ΨA = [𝜓 (𝐴0);𝜓 (𝐴1); ...] , 𝐴 ∈ A .

(5)

Here, 𝑊𝑏 is a neural network parameter, 𝜓 (𝐴) is the encoding
for action 𝐴 (see below), and the resulting 𝜑 (ℎ,A) is a vector of
assigned probabilities for all actions. The encoding 𝜓 (𝐴) of an
action 𝐴 depends on whether the action (i.e., grammar production)
involves a program-dependent term, such as the name of a storage
variable in the input contract. Specifically, if 𝐴 is a production of
the form ⋄ → 𝑣 where 𝑣 is a program variable, then 𝜓 (𝐴) is the
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vector representation of 𝑣 in the GNN from the previous subsection.
Otherwise 𝜓 (𝐴) is learnable embedding (denoted by 𝜓𝐴) for the
program-agnostic grammar production:

𝜓 (𝐴) =


ℎ𝑣 if 𝐴 is program-dependent and node 𝑣

represents 𝐴 in the GNN
𝜓𝐴 otherwise .

5 USING LEARNED POLICY FOR VERIFYING
ARITHMETIC SAFETY

In this section, we describe how to use the learned neural policy
from the previous section to perform verification, as summarized in
Algorithm 1. This algorithm takes as input (1) a Solidity program 𝑃 ,
(2) a trained encoder networkN𝑒 (described in Section Section 4.2),
(3) a trained decoder network N𝑑 (from Section Section 4.3), and
(4) a probability threshold 𝜖 that controls how many candidate
invariants are enumerated. If verification is successful, the program
returns “Verified"; otherwise, it returns a new “hardened” program
𝑃 ′ with appropriate runtime checks inserted to ensure the absence
of arithmetic overflows.

The verification algorithm starts by using the type system from
Section Section 2 to generate a set of hard and soft type constraints
as discussed in Definition 2.1. We assume that the only unknown
in the generated type constraints 𝐶ℎ ∪𝐶𝑠 is the contract invariant
because (a) the types of storage variables are easily derived from the
contract invariant and (b) the types of local variables can be easily
inferred via local analysis from the types of storage variables.2
Hence, given a contract invariant I, it is easy to check which of
the hard and soft constraints are satisfied.

Once the type constraints over the unknown invariant are gener-
ated, the Verify procedure enters a loop (lines 4–12) that terminates
either when the contract is verified or an invariant that satisfies
the largest number of soft constraints is found. In each iteration,
the GetInv procedure (discussed later) is called to find a candidate
contract invariant (line 5). If the returned candidate I does not
satisfy the hard constraints (line 7), this means that I is not a valid
contract invariant; so the algorithm moves on to the next candi-
date. Otherwise, it checks how many soft constraints I satisfies. If
all of them are satisfied, then contract 𝑃 is reported as being safe
(line 10). If this is not the case but I satisfies more soft constraints
than previously enumerated contract invariants, the best invariant
found so far is updated at line 12. Once the main loop (lines 4–12)
terminates, lines 13–15 identify potentially unsafe arithmetic oper-
ations, which correspond to soft constraints that cannot be verified
using 𝑖𝑛𝑣 . To ensure arithmetic safety, Algorithm 1 generates an
instrumented contract by adding a run-time overflow check for
each unsafe operation (lines 15–16).

Next, we discuss the GetInv procedure (shown on the right
side of Algorithm 1) for generating candidate contract invariants.
This procedure uses the encoder and decoder neural networks from
Section Section 4 (trained via policy gradient) to construct candi-
date invariants in decreasing order of probability. To this end, it
maintains a worklist𝑊 of partial contract invariants (along with

2Most contracts do not contain loops inside methods, so loop invariants are typically
not needed in this context.

their probability according to the neural policy). The algorithm
starts by constructing the Arithmetic Dependency Graph (ADG)
abstraction discussed in Section Section 4.1. Then, it enters a loop
(lines 21–31) where, in each iteration, the highest probability PCI is
dequeued from the worklist and expanded using a grammar produc-
tion. Specifically, the procedure first generates a vector encoding of
the program and the current PCI using encoder network N𝑒 (line
23) and maps this state to a probability distribution over actions
using the decoder networkN𝑑 (line 24). Here, each action is a triple
of the form (𝑁, 𝑅, 𝑝𝑖 ) where 𝑁 is a hole (i.e., specific occurrence of a
non-terminal) in the PCI, 𝑅 is a grammar production from Figure 2,
and 𝑝𝑖 is the probability of this action according to the learned
policy. The GenInv procedure expands the current PCI using the
most likely action (line 26) and returns it as the candidate invariant
if there are no holes left. Otherwise, the new PCI is added to the
worklist if its probability exceeds the specified threshold 𝜖 .

6 IMPLEMENTATION AND EVALUATION
We have implemented the proposed algorithm in a new tool called
Cider3 written in Python. Cider’s GNN is instantiated by Trans-
formerConv [20] built on top of PyTorch Geometric [6] and RL-
lib [14]. As discussed in the previous section, Cider is incorporated
into Solid [27] as its type inference engine and leverages Solid’s
type checking capabilities.

In what follows, we describe the results of our empirical evalua-
tion which is designed to answer the following research questions:
• RQ1: Can Cider infer better contract invariants than exist-
ing tools in the context of arithmetic overflow checking?
• RQ2: Does Cider improve inference time compared to other
baselines?
• RQ3: Is the ADG abstraction more useful compared to a
more standard program representation?

Benchmarks. We evaluate Cider on a set of 120 Solidity programs
taken from prior work. 60 of our evaluation benchmarks come from
[27], and the remaining 60 contracts are taken from [15].

Training. We trained Cider on 100 contracts that are disjoint
from the test set and that are sampled from Etherscan. To avoid
duplication between the testing and the training sets (and among
themselves), we cluster the contracts based on a number of syntac-
tic (e.g., LOC, similarity scores) and semantic features (e.g., total
number of soft and hard constraints, percentage of soft constraints
that can be proved using the “true” invariant, the similarity scores
of the ADGs, etc.). We then sample one candidate from each cluster
and perform manual inspection to avoid duplication. We note that
because the verification procedure dominates the overall running
time, to reduce the actual training time, we used smaller contracts
for training than for testing, which can also be used to validate
whether the agent can generalize to complex, unseen instances.
The training set only contains contracts that take fewer than 10
seconds per verifier call, and on average contain 250 lines of code
(LOC). The testing set consists of contracts with an average LOC
of 400 and maximum of over 1500. The training was performed on
a MacBook Pro with 2GHz Quad-Core Intel Core i5 CPU and 16GB
of RAM.
3stands for Contract Invariants via DEep Reinforcement learning
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Algorithm 1 for verifying/hardening programs against arithmetic overflow
Input: Program 𝑃 , Encoder N𝑒 , Decoder N𝑑 , Threshold 𝜖
Returns: Verified(𝑃 ) or Hardened(𝑃 ′)

1: procedure Verify(𝑃 , N𝑒 , N𝑑 , 𝜖)
2: 𝑏𝑒𝑠𝑡 ← 0; 𝑖𝑛𝑣 ← 𝑡𝑟𝑢𝑒

3: (𝐶ℎ,𝐶𝑠 ) ← GenTypeConstraints(𝑃)
4: while true do
5: I ← GetInv(𝑃,N𝑒 ,N𝑑 , 𝜖)
6: if I = ⊥ then break
7: if I ̸|= 𝐶ℎ then continue
8: 𝜈 ← NumSatisfied(𝐶𝑠 ,I)
9: if 𝜈 = |𝐶𝑠 | then
10: return Verified(𝑃 )
11: if 𝜈 > 𝑏𝑒𝑠𝑡 then
12: 𝑏𝑒𝑠𝑡 ← 𝜈 ; 𝑖𝑛𝑣 ← I
13: 𝑃 ′ ← 𝑃

14: Υ← GetUnsafeOps(𝑃,𝐶𝑠 , 𝑖𝑛𝑣)
15: for each 𝑜𝑝 ∈ Υ do
16: 𝑃 ′ ← AddOverflowCheck(𝑃 ′, 𝑜𝑝)
17: return Hardened(𝑃 ′)

18: procedure GetInv(𝑃 , N𝑒 , N𝑑 , 𝜖)
19: 𝑊 ← {(⋄, 1.0)};
20: 𝐺 ← ConstructADG(𝑃)
21: while𝑊 ≠ ∅ do
22: (𝑝𝑐𝑖, 𝑝) ← PopBest(𝑊 );
23: ℎ𝑠 ← N𝑒 (𝐺, 𝑝𝑐𝑖)
24: 𝐴← N𝑑 (ℎ𝑠 )
25: for each (𝑁, 𝑅, 𝑝𝑖 ) ∈ 𝐴 do
26: 𝑝𝑐𝑖′ ← ExpandNonTerminal(𝑝𝑐𝑖, 𝑁 , 𝑅)
27: 𝑝′ ← 𝑝 · 𝑝𝑖
28: if 𝑝𝑐𝑖′ is complete then
29: yield 𝑝𝑐𝑖′

30: else if 𝑝′ > 𝜖 then
31: 𝑊 ←𝑊 ∪ {(𝑝𝑐𝑖′, 𝑝′)}
32: return ⊥

Baselines. To evaluate the quality of the learned invariants as
well as inference time, we compare Cider against the following
two baselines:
• SolidChc: As mentioned earlier, Solid [27] incorporates a
type inference engine that leverages a state-of-the-art CHC
solver, namely Spacer [13]. We refer to this version of Solid
as SolidChc and use it as one of our baselines.
• Houdini: We also implement a Houdini-style inference al-
gorithm that generates conjunctive invariants. This baseline
generates all possible atomic predicates by unwinding the
grammar from Figure 2 up to a fixed bound and then gener-
ates the strongest conjunctive invariant over this universe
in the standard way [7].

Experimental setup. Recall from Algorithm 1 that our algorithm
uses a parameter 𝜖 that controls how we sample rollouts from the
policy. In our evaluation, we use 𝜖 = 0.2 and sample at most 5
rollouts. We also set a time limit of 10 minutes and, for runs that
exceed this limit, we consider the best invariant found within that
limit. To perform the comparison against SolidChc, we use a time
limit of 10 seconds per Z3 query and a ten-minute total timeout.
We also use a 10 minute time limit when evaluating Houdini.

6.1 Evaluating the Quality of Contract
Invariants

In this subsection, we evaluate the quality of the contract invariants
inferred by Cider in terms of the percentage of safe arithmetic
overflows that can be discharged using contract invariants inferred
by Cider and our two baselines.

The results of this evaluation are shown in Figure 1. Here, the
column labeled “Ops" shows the total number of arithmetic opera-
tions across all contracts, and the column labeled “Safe" shows the

Ops Safe
Houdini SolidChc Cider

Safe % Safe % Safe %

1828 1190 946 79.5% 1038 87.2% 1155 97.1%

Table 1: Evaluation of the quality of inferred invariants by
each tool. “Ops” is the total number of arithmetic operations
across all contracts, and “Safe” shows the total number of
safe operations. For each tool, the “Safe” and “%” columns
record the number and percentage of arithmetic operations
that can be proven safe using invariants proposed by the tool.

total number of safe operations. The next two columns show the
number and percentage of safe operations that can be discharged
for each of the three tools. As is evident from these numbers, the
invariants inferred by Cider allow discharging more arithmetic
operations.

To provide further intuition about these results, Figure 2 shows
the number and percentage of non-trivial contract invariants that
can be inferred by SolidChc and Cider. Here, by “non-trivial”, we
mean a contract invariant that is not logically equivalent to true.
Across all contracts, Cider is able to infer a non-trivial invariant
for 85.8% of the contracts, whereas SolidChc infers non-trivial
invariants for 50.8% of the contracts.

Result for RQ1: Invariants inferred by Cider discharge 97.1%
of the arithmetic checks, while the SolidChc and Houdini
baselines discharge 87.2% and 79.5%, respectively.
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(a) Average reward per episode (b) Loss function

Figure 6: Comparison of training trajectories for Cider (grey) and Cider-NoADG (orange).

Total
SolidChc Cider

Non-trivial % Non-trivial %

120 61 50.8% 103 85.8%

Table 2: The number and percentage of contracts for which
Houdini, SolidChc, andCider can infer non-trivial invariants.

Houdini SolidChc Cider

Avg (s) 530.2 72.9 38.6

Median (s) 600.0 44.9 6.9

Table 3: Inference time statistics for Houdini, SolidChc, and
Cider

6.2 Evaluating Efficiency of Inference
In addition to the quality of the contract invariants, another impor-
tant evaluation metric is the time it takes to infer these invariants.
This is particularly important in a setting like the one we target,
where the invariant generation engine is used for type inference and
compile-time arithmetic overflow checking. Thus, we also compare
the invariant inference time of Cider against our two baselines. The
inference time includes query timeouts, which typically happen
when the solver cannot prove a soft constraint using the supplied
invariant. We note, however, that timeouts affect Cider and Solid-
Chc equally, since Cider also relies on the verifier component of
SolidChc to check proposed invariants.

The results of this evaluation are shown in Figure 3. In terms of
average (resp. median) verification time, Cider is 1.8× (resp. 6.5×)
faster than SolidChc and 15.5× (resp. 53.4×) faster than Houdini.
Thus, overall, Cider increases the precision of the verifier while
also reducing its running time significantly.

Ops Safe
Cider-NoADG Cider

Safe % Safe %

1828 1190 1040 87.4% 1155 97.1%

Table 4: Comparison of the number and percentage of arith-
metic operations can be proven safe using invariants inferred
by Cider and Cider-NoADG.

Result for RQ2: Cider performs verification 1.8× faster com-
pared to SolidChc and 15.5× compared to Houdini on average.

6.3 Ablation Study
In this section, we describe the results of an ablation study that we
use to evaluate the effectiveness of the ADG abstraction discussed
in Section 4.1. In particular, we consider Cider-NoADG, which
does not use our proposed ADG abstraction. Instead, it feeds the
AST representation of the program directly to the graph neural
network. To study the effect of our ADG graph abstraction, we
compare Cider with Cider-NoADG in terms of both their training
trajectories and their effectiveness during testing.

Training. Figure 6 shows the average reward and the loss func-
tion per episode for each variant. We observe that Cider-NoADG,
which utilizes larger, more noisy graphs, converges more slowly
than Cider. In the long run, Cider-NoADG also fails to learn a
good policy even on the training data, and consistently scores a
lower reward and a higher loss than Cider.

Impact on quality of invariants. Figure 4 compares the num-
ber and percentage of arithmetic operations that can be proven
safe by Cider and Cider-NoADG. The policy learned by Cider-
NoADG fails to generalize to unseen contracts, resulting in lower-
quality contract invariants that can only discharge 87.3% of overflow
checks.
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Result for RQ3: Our ADG representation is useful for effective
training, and it improves the quality of invariants needed for
proving arithmetic safety.

6.4 Threats to Validity
Quality of the corpus. Even though the neural architecture in

Figure 4 is more resilient to the limitation of the existing data set,
the performance of Cider may still be sensitive to the quality of
the training data. To mitigate this concern, we avoid duplication
and obtain representative training data by clustering contracts
based on their syntactic (e.g., LOC, similarity scores) and semantic
features (e.g., number of constraints, similarity scores of ADGs,
etc.). We then sample candidates from each cluster and perform
manual inspection to avoid duplication. In the future, we also plan
to leverage transfer learning to incorporate smart contracts written
in other languages (e.g., Vyper and Rust, etc.).

Benchmark selection. Because Solid—which Cider uses as the
verifier—only supports a core subset of Solidity features, the bench-
marks in our testing set may not represent the actual distribution
of the contracts on Etherscan. Supporting every nascent or depre-
cated feature used by contracts “in the wild” may require signifi-
cant engineering effort. However, since we use small contracts for
training and leave the medium and larger contracts for testing, it
suggests that the neural agent is able to generalize to more complex
instances. Therefore, we believe our comparison is sufficient to
show the strength of our technique. Furthermore, since both our
neural architecture and the inference algorithm are designed in
domain-agnostic way, we also believe our technique can generalize
to other unseen contracts.

7 RELATEDWORK
Smart contract security has become a very active research topic in
the past few years. In what follows, we discuss prior work in this
space that is most closely related to our proposed approach.

Smart contract verification. Due to their immutable nature once
deployed, verification of smart contracts has received significant
attention from both the formal methods and security communities.
Among recent efforts, many address the problem of verifying arith-
metic overflow safety, as overflows in this setting are known to
be a serious security concern. One of the efforts in this space [12]
encodes the semantics of arithmetic operations into verification con-
ditions and tries to discharge them using off-the-shelf SMT solvers.
Another recent effort approaches this problem from the synthesis
angle and employs a CEGIS-style algorithm to infer arithmetic in-
variants to prove overflow safety [24]. As mentioned earlier, our
work builds on SolType [27], a refinement type system designed
for checking arithmetic safety. However, as demonstrated in our
evaluation, it provides a more effective type inference mechanism
that can be used to further increase automation while improving
inference time. We do not perform an empirical comparison against
arithmetic safety checkers other than Solid, as prior work [27] has
shown that they are outperformed by Solid.

Going beyond arithmetic safety, several verification techniques
target a more general class of functional correctness properties. For
example, VerX [18] uses symbolic execution to verify functional

correctness properties written in Past LTL. Other tools for verify-
ing a more general class of properties include SmartPulse [25],
VeriSol [29], Sailfish[2], and K-framework [17]. We note that all
of these techniques utilize contract invariants and would benefit
from advances in automated inference of such invariants. While
our proposed approach primarily targets invariants that are useful
for arithmetic overflow checking, we believe that adaptations of
our proposed approach (e.g., using a different program abstrac-
tion) could help infer higher-quality contract invariants for other
verification tasks as well.

Invariant generation. There has been extensive work on invariant
generation—particularly on generating numeric loop invariants—
using techniques such as abstract interpretation [4, 9, 16, 23], pred-
icate abstraction [7], logical abduction [5], randomized search [19],
decision trees [8, 30], and deep learning [21]. However, contract
invariants differ from loop invariants in other settings because they
typically require reasoning about aggregate properties of complex
data structures like nested mappings. Hence, verifying important
security properties of smart contracts often requires inference of
more complex invariants than numeric relationships between scalar
variables.

Machine learning for verification. Recently, there has been signif-
icant interest in applying machine learning techniques to program
verification. For example, [21] uses stochastic search to generate
candidate invariants; [3] applies reinforcement learning for rela-
tional verification, and [30] combines linear classification with deci-
sion tree learning for solving CHC constraints. The work that most
closely resembles ours is [21], which leverages reinforcement learn-
ing to infer loop invariants of C programs. Their technique utilizes
a neural architecture that is designed to mimic the way a human
reasons about program correctness. To that end, their proposed
solution consists of three key pieces, including (1) a structuredmem-
ory representation of the program, (2) a multi-step auto-regressive
model to incrementally construct the loop invariant, and (3) an
attention component that allows focusing on different parts of the
program. There are several differences between their approach and
ours, including the application domain (loop invariants in C vs.
contract invariants in Solidity), the abstraction used for generating
a program embedding (ADG vs. AST/CFG), the reward function, the
neural architecture, and the underlying RL algorithm. In addition
to these differences, our method is designed to be used as the type
inference backend for a refinement type system.

8 CONCLUSION
We presented a new technique, based on reinforcement learning,
for inferring smart contract invariants that are useful for proving
arithmetic safety properties. Our approach learns a neural policy
that produces a distribution over candidate invariants and uses
the learned policy to perform type inference in a refinement type
system.

We have implemented this approach in a tool called Cider and
incorporated it into an existing verifier (based on refinement type
checking) for proving arithmetic safety. Our evaluation shows that
Cider can discharge more arithmetic operations while significantly
reducing verification time compared to two different baselines,
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leading to faster verification and hardened contracts with fewer
run-time assertions.
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