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Program Synthesis
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Motivating Example
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— | What would synthesizers usually do?
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Motivations

Quality of Different IO Examples

It's very difficult for end-users without proper
expertise to provide good IO examples.

Let the synthesizer guide the user in
providing useful IO examples.

via User Interaction
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User Interaction
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Overview of FAERY
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Selection of Best Query

Input Example
O explored programs
Target Search Space
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How a structured search is performed:
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Selection of Best Query (cont'd)

How do we evaluate the quality of a query?
Candidate Input - Sampled Programs - Sampled Target Search Space

: ¢! : P;: take (reverse (sort(e;,)) ,3)
in '
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pz: drop(zevezss (sozt (e )) ,2) Unexplored programs that can’t

be pruned by initial specification
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Evaluation Setup

We instantiate and evaluate FAERY on two domains.

Data Wrangling Adapted DSL and benchmarks from previous works!1-2],

JSON Transformation Adapted DSL from JQ3! library; Collected benchmarks from StackOverflow.

We compare FAERY with state-of-the-art tools.

NEeol'l For data wrangling domain, we directly compare with the tool.

TRINITY4] We build a JSON transformation version of the tool.

[1] Program Synthesis Using Conflict-Driven Learning. Feng, Y. et al. PLDI’18.
[2] Component-Based Synthesis of Table Consolidation and Transformation Tasks from Examples. Feng, Y. et al. PLDI'17.

[3] Trinity: An Extensible Synthesis Framework for Data Science. Martins, R. et al. VLDB’19.

[4] JQ: a lightweight and flexible command-line json processor. Dolan, S. 2018.




Evaluation Results

Benchmark MAX

Data #solved 14/15
Nk avg. time 174s_
S avg. speed-up | 2.4Xx |

JSON #soh{ed 15/15
Transformation aygHime 48s
avg. speed-up I 9.5% |

Table: Scalability Improvements

Strat Data JSON
i Wrangling | Transformation
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Im Fabry (MAX) 99s 105s
FAERY (RANDOM) |~ T42s — |~ = 168s
NEO/TRINITY 170s 174s

Table: Reliability Improvements

FAERY is effective; check paper for more results.
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Conclusions

Program synthesizer improvement via user interaction

A novel interactive synthesis algorithm

Empirically demonstrated benefits of proposed algorithm

Questions?




