Fast and Reliable Program Synthesis
via User Interaction

Yanju Chen, Chenglong Wang, Xinyu Wang, Osbert Bastani, Yu Feng

UCSR Maeai UNIVERSITY OF

~——> Research MICHIGAN Penn

Program Synthesis

=§ P /S‘y\nthesizer T
»Specification ¢ > LL71Program P

Find a program P that satisfies the specification ¢.

< B oo

Natural Input-Output Logical
Languages Examples Constraints

"; -
— | How does a synthesizer prune the search space of incorrect
| candidate programs and nail down promising ones?

Motivating Example
con 113,524 > et 54,3
€in Size: 5 €out Size: 3

- -
e o

— | What would synthesizers usually do?

Sampling
Candidate Partial Program
reverse (map (e, O))
€in 5 Abstract Reasoning S

gy
Inconsistent; pruned

/

Motivations

Quality of Different IO Examples

It's very difficult for end-users without proper
expertise to provide good IO examples.

Let the synthesizer guide the user in
providing useful IO examples.

via User Interaction

number of partial programs flij

g
=}

E

(]
o
o

number of partial programs flipped
=
g g

o

3]

=

(]
o

=
o

number of partial programs flipped
]

S
a
53

800

600

400 1

200

benchmark r18

20 40 60 80 100
example id (sorted, not one-to-one)
benchmark r24
20 40 60 80 100
example id (sorted, not one-to-one)
benchmark r45
0 20 40 60 80 100

example id (sorted, not one-to-one)

number of partial programs flipped number of partial programs flipped

number of partial programs flipped

3]

&

&

(]
o

=
o

(=]

benchmark r4

140

120

100

20 2 60 80 100
example id (sorted, not one-to-one)

benchmark r5

20 2 60 80 100
example id (sorted, not one-to-one)

benchmark r23

20 40 60 80 100
example id (sorted, not one-to-one)

Real-World Majority n

User Interaction

Timeout{

Query Construction

Output Example /»

Response 1

.
Query Selection

User Interaction

Input Example

Overview of FAERY

Specification —>/ Y P =FILL(P,T) %
{ Statistical >(Deduction}

|
Focus of this talk! F m
, \
User Interaction

l Policy /4 v/ X L Engine — Solution
GETROLLOUT
MUTATE J - 3 ~
(R e e e \
| | | |
I Optimal Input = Queried Output I
I l
Rollouts | * f I
| g g i
Candidate Inputs _ SELECTQUERY QUERYUSER |&= a
I
I
I
]

Selection of Best Query

Input Example
O explored programs
Target Search Space
————— = ——
unexplored programs that

I
IO cannot be pruned by (e;,, €yy¢) | Search space used

————————————— -~ to evaluate quality
unexplored programs that

can be pruned by (e;,,, e,ut)

How a structured search is performed:

of query

- -
e o

-

How?

£ N Given correct user response, pick
: 4 the query expected to prune the

L Eel /<. unexplored largest search space that can’t be
pis 52 search space pruned by the initial example.

Selection of Best Query (cont'd)

How do we evaluate the quality of a query?
Candidate Input - Sampled Programs - Sampled Target Search Space

: ¢! : P;: take (reverse (sort(e;,)) ,3)
in '

'(6 [1.51,1.4)}

pz: drop(zevezss (sozt (e)) ,2) Unexplored programs that can’t

be pruned by initial specification

: take (reverse (map(e¢;,,+1)) ,3)

in’

¥
Abstract P bi 1 \ How?
Output g Objective Value /¥
(3[1,513,[1,5]) Q @ 0 2 Given correct user response, pick
(4,[1,51,5,[1,5]) g 0 Q 1 the query expected to prune the
largest search space that can’t be
(3.126152) @ v 2 pruned by the initial example.

\ 4

Aggregated Objective Value
ey “Quality” of the candidate input/query n

abs

Evaluation Setup

We instantiate and evaluate FAERY on two domains.

Data Wrangling Adapted DSL and benchmarks from previous works!1-2],

JSON Transformation Adapted DSL from JQ3! library; Collected benchmarks from StackOverflow.

We compare FAERY with state-of-the-art tools.

NEeol'l For data wrangling domain, we directly compare with the tool.

TRINITY4] We build a JSON transformation version of the tool.

[1] Program Synthesis Using Conflict-Driven Learning. Feng, Y. et al. PLDI’18.
[2] Component-Based Synthesis of Table Consolidation and Transformation Tasks from Examples. Feng, Y. et al. PLDI'17.

[3] Trinity: An Extensible Synthesis Framework for Data Science. Martins, R. et al. VLDB’19.

[4] JQ: a lightweight and flexible command-line json processor. Dolan, S. 2018.

Evaluation Results

Benchmark MAX

Data #solved 14/15
Nk avg. time 174s_
S avg. speed-up | 2.4Xx |

JSON #soh{ed 15/15
Transformation aygHime 48s
avg. speed-up I 9.5% |

Table: Scalability Improvements

Strat Data JSON
i Wrangling | Transformation
—_-_-_-_-_-_"
Im Fabry (MAX) 99s 105s
FAERY (RANDOM) |~ T42s — |~ = 168s
NEO/TRINITY 170s 174s

Table: Reliability Improvements

FAERY is effective; check paper for more results.

3000 1

»
2
S 2000
O
f"i &~ FAERY
o d - N
2 1000 EO
|—

O- L} L T

4 8 12
Solved Benchmarks
Figure: Comparison with NEO
on data wrangling domain

20001
wn
2
S 1500
S .
£ 1000 s
g ~®- TRINITY
= 500

0.

4 8 12
Solved Benchmarks

Figure: Comparison with TRINITY

on JSON transformation domain

Conclusions

Program synthesizer improvement via user interaction

A novel interactive synthesis algorithm

Empirically demonstrated benefits of proposed algorithm

Questions?

