
Refinement Types for Visualization
Jingtao Xia∗

jingtaoxia@cs.ucsb.edu
University of California, Santa

Barbara
USA

Junrui Liu∗
junrui@cs.ucsb.edu

University of California, Santa
Barbara
USA

Nicholas Brown
nobrown@sbcglobal.net

University of California, Santa
Barbara
USA

Yanju Chen
yanju@cs.ucsb.edu

University of California, Santa
Barbara
USA

Yu Feng
yufeng@cs.ucsb.edu

University of California, Santa
Barbara
USA

Abstract

Visualizations have become crucial in the contemporary data-driven
world as they aid in exploring, verifying, and sharing insights ob-
tained from data. In this paper, we propose a new paradigm of visu-
alization synthesis based on refinement types. Besides input-output
examples, users can optionally use refinement-type annotations
to constrain the range of valid values in the example visualization
or to express complex interactions between different visual com-
ponents. Our system’s outputs include both data transformation
and visualization programs that are consistent with refinement-
type specifications. To mitigate the scalability challenge during
the synthesis process, we introduce a new visualization synthe-
sis algorithm that uses lightweight bidirectional type checking to
prune the search space. As we demonstrate experimentally, this
new synthesis algorithm results in significant speed-up compared
to prior work.

We have implemented the proposed approach in a tool called
Calico and evaluated it on 40 visualization tasks collected from
online forums and tutorials. Our experiments show that Calico can
solve 98% of these benchmarks and, among those benchmarks that
can be solved, the desired visualization is among the top-1 output
generated by Calico. Furthermore, Calico takes an average of 1.56
seconds to generate the visualization, which is 50 times faster than
Viser, a state-of-the-art synthesizer for data visualization.

ACM Reference Format:

Jingtao Xia, Junrui Liu, Nicholas Brown, Yanju Chen, and Yu Feng. 2024.
Refinement Types for Visualization. In 39th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE ’24), October 27-November
1, 2024, Sacramento, CA, USA. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3691620.3695550

∗Both authors contributed equally to this research.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1248-7/24/10
https://doi.org/10.1145/3691620.3695550

1 Introduction

Visualizations have become crucial in the contemporary data-
drivenworld as they aid in exploring, verifying, and sharing insights
obtained from data. With the widespread adoption of challenging
visualization tasks across various application domains, there has
been a surge in the development of multiple libraries that strive
to simplify intricate visualization tasks. For example, in the past
few years, dozens of visualization libraries have emerged in pop-
ular programming languages such as R, Python, and JavaScript.
Moreover, there has been a flurry of research focused on designing
programming systems such as D3 [1] and Vega-Lite [23], aimed at
enhancing real-world visualization tasks.

To help data scientists visualize raw data that is exploding in
quantity, there has been a growing interest in using program syn-
thesis to automatically generate visualization programs from user
demonstrations. One flavor of such demonstrations is input-output
(IO) examples [29]: the user provides tabular input data and demon-
strates how to visualize a small number of data points. However, for
many visualizations that require complex computations, concrete
examples are often insufficient for fully expressing user intent, lead-
ing to overfitting. Moreover, existing synthesizers (e.g., Viser [28])
based on input-output examples require the user to provide the
exact values (e.g. height of a bar, or x-coordinate of a data point)
via laborious manual calculation, which hinders the adoption of
automated synthesizers.

In this paper, we propose a new paradigm of visualization syn-
thesis based on refinement types. Refinement types are types en-
dowed with logical formulae that constrain values; for example,
{𝜈 : Int | 0 < 𝜈} stands for positive integers. Besides IO examples,
the user of our system can also use refinement-type annotations to
constrain the range of valid values in the example visualization or
to express complex interactions between different visual compo-
nents. Our system’s outputs include both data transformation and
visualization programs that are consistent with refinement-type
specifications.

While there has been recent work on automating visualization
tasks by reducing them to programming-by-example [28, 29] for
table transformations, these techniques focus on cases where the
specification is a pair of input and output tables. In contrast, the
refinement type specification in our setting could be a partial out-
put table whose elements (e.g., cells, column names, etc.) are re-
fined with logical qualifiers 𝜙 . Therefore, pruning strategies used

1871

2024 39th IEEE/ACM International Conference on Automated Software Engineering (ASE)

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0009-0007-3509-4018
https://orcid.org/0000-0002-9656-7073
https://orcid.org/0009-0004-7296-5968
https://orcid.org/0000-0002-6494-3126
https://orcid.org/0000-0003-1000-1229
https://doi.org/10.1145/3691620.3695550
https://doi.org/10.1145/3691620.3695550
https://doi.org/10.1145/3691620.3695550
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3691620.3695550&domain=pdf&date_stamp=2024-10-27

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Jingtao Xia, Junrui Liu, Nicholas Brown, Yanju Chen, and Yu Feng

in prior work are not effective in our setting due to the lack of
fine-grained handling of refinement-type annotations. However, a
general refinement-type-based synthesizer [20] will not work for
our case because it requires users to provide a precise semantic
specification for each construct in the domain-specific language
(DSL) for table/visualization transformation. To deal with this chal-
lenge, our key insight is to refine each type of construct in our
visualization DSL with logical formulas that over-approximate the
computational constraints on both tables and arguments, including
those on how the output columns and rows are produced. These log-
ical formulas are framework-independent, as they are formulated
from themathematical definitions of operators. Thenwe introduce a
new visualization synthesis algorithm that uses lightweight bidirec-
tional type checking to prune the search space. As we demonstrate
experimentally, this new algorithm results in much faster synthe-
sis performance compared to prior work [28, 29] for automating
visualization tasks. We have implemented the proposed approach
in a new tool called Calico and evaluated it on 40 visualization
tasks collected from online forums and tutorials. Our experiments
show that Calico can solve 98% of these benchmarks and, among
those benchmarks that can be solved, the desired visualization is
the top-1 output generated by Calico. Furthermore, Calico takes
an average of 1.56 seconds to generate the visualization, which is
50 times faster than Viser, a state-of-the-art synthesizer for data
visualization.We believe thatCalico is fast enough to be practically
useful to prospective users.

To summarize, this paper makes the following key contributions:

• We introduce a rich and expressive specification language
for data visualization based on refinement types.
• We propose a scalable algorithm for synthesizing table trans-
formations using refinement types. Our algorithm employs
lightweight bidirectional refinement type checking to effec-
tively prune the search space.
• We evaluate our approach on over 40 tasks collected from on-
line forums and tutorials and show that Calico significantly
outperforms prior work on data visualization.

2 Overview

In our Calico framework, the user provides an input table and
a demonstration of how to visualize example data points via a so-
called visual trace. Our tool then synthesizes a program that, when
evaluated on the input table, produces a visualization consistent
with the user-provided visual trace. The synthesized program con-
sists of a table program and a visual program: the former applies a
sequence of table operators (e.g., projection, filtering) to transform
the input table into a final table containing values needed for the vi-
sualization; the latter program renders the final table using various
charts (e.g., bar charts). Since synthesis of visualization programs
from a is standard [28, 29], in the remainder of the paper we focus
on table transformation, although our examples may incorporate
visual programs for clarity.

As an example, consider the visualization task shown in Figure 1.
The user may want to visualize the input table 𝑡in as the bar chart
shown on the right, where each bar represents the percentage of
objects with feature𝐴 for each condition. The desired program first

applies table transformation operators spread andmutate to obtain
output table 𝑡out that contains columns condition and percentage.
Then, the visual program renders a bar chart using those columns.

How can the user demonstrate the intended visualization using
visual traces? In previous works, such as Falx [29], the visual traces
can only contain concrete values. That is, the user must show the
exact height of the first bar with the trace Bar(𝑥 = 1, 𝑦 = 0.667) .
However, in order to compute the correct value of 𝑦, the user has
to (i) manually locate rows in the table for which condition = 1, (ii)
extract the count value for each feature, and (iii) use a calculator
to perform the required arithmetic, a non-trivial task. As a result,
the user would have manually performed the complex spread and
mutate operations that would appear in the desired program. This
process can quickly become unmanageable for larger tables and
more complex visualizations.

A unique aspect of Calico is that the arduous and error-prone
demonstration of concrete values is replaced by more intuitive con-
straints in the visual traces, encoded as refinement types. In this
example, the user can simply specify that 𝑥 comes from column
condition and 𝑦 is a percentage between 0 and 1, using the visual
trace Bar(𝑥 ∈ condition, 0 < percentage < 1). Our tool automati-
cally transforms this trace into a refinement type on the final table:

Tout : ⟨x :: {𝜈 : Int | 𝜈 ≺ {condition}},
y :: {𝜈 : Real | 0 < 𝜈 ∧ 𝜈 < 1}, ⟩

where 𝜈 ≺ {condition} indicates a data-flow lineage from the in-
put column condition to the output column x. Here, the type Tout
describes an output table with at least two columns called x and y,
each described by a refinement type. For example, column y has a re-
finement type whose base type is Real, and refined by the predicate
𝑃 (𝜈) ≡ 0 < 𝜈 ∧ 𝜈 < 1.

2.1 Synthesis via Bidirectional Type Inference

Given the input table and the type Tout of the output table, Cal-
ico will find a program that generates a final table of type Tout.
However, existing techniques for synthesizing programs from re-
finement types (e.g., Synqid [20]) are insufficient for solving this
problem: they assume a precise semantic specification of each lan-
guage construct. This assumption is known to be problematic in
the table program synthesis domain [7].

Instead, we propose a novel algorithm based on the ideas of
bidirectional analysis [19]. Our key insight is that using refinement
types, despite the difficulty of accurately encoding table operations
semantically using refinement types, we can define abstract seman-
tics of each table operation in both forward and backward directions,
even if the arguments to the operation are not fully determined.
Specifically, if the input (or output) to a table operator has type
𝜏 , we can approximate the effect of applying (or unapplying) the
operator and obtain a new type 𝜏 ′; the forward and the backward
directions will eventually meet and generate a type consistency con-
straint relating 𝜏 and 𝜏 ′. The type consistency constraint allows
us to determine whether an incomplete table program is feasible,
and to prune infeasible programs early to speed up the synthesis
search.

Consider the following partial program as a candidate for solving
the motivating example: 𝑡in ≫ mutate(tmp = count∗condition) ≫

1872

Refinement Types for Visualization ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Figure 1: An example visualization task

select(□), where □ indicates a hole yet to fill in and ≫ connects
operations sequentially. Although this program is incomplete, Cal-
ico can still prove its infeasibility: regardless of what argument
is supplied to select, the resulting program cannot produce the
desired output table (and hence the visualization). To determine
infeasibility, Calico assigns the refinement type Tin to the input
table:

Tin ≡ ⟨count :: {𝜈 : Int | (1 ≤ 𝜈 ∧ 𝜈 ≤ 10)},
condition :: {𝜈 : Int | 1 ≤ 𝜈 ∧ 𝜈 ≤ 3}, . . .⟩.

Calico’s forward analysis infers that, after the mutate operation
(which introduces a new column using the specified computation
expression), the type T ′ of the resulting table will have an addi-
tional column called tmp with the refinement type {𝜈 : Int | 1 ≤
𝜈 ∧ 𝜈 ≤ 30}:

T ′ ≡ ⟨tmp :: {𝜈 : Int | 1 ≤ 𝜈 ∧ 𝜈 ≤ 30},
count :: {𝜈 : Int | 1 ≤ 𝜈 ∧ 𝜈 ≤ 10},

condition :: {𝜈 : Int | 1 ≤ 𝜈 ∧ 𝜈 ≤ 3}, . . .⟩.

On the other hand, Calico’s backward analysis examines the
operation select(□). It sees that because the select operation can
only return a table with equal or fewer columns, the type of the
output table Tout is also a valid over-approximation of the input to
select. At this point, the forward and the backward analysis meet
at the output of mutate and the input of select, and they infer two
types that describe the same table. Thus, these two types must be
consistent, and Calico generates the following type consistency
constraint: ⊨ T ′ ⊲⊳ Tout . Calico utilizes a set of inference rules
to decide whether such relations hold. In this case, because T ′
does not have any column containing real numbers between 0 and
1 as required by Tout, Calico concludes that the two types are
inconsistent, and the candidate program is deemed infeasible and
excluded from further consideration.

3 Formulation

In this section, we formally define the problem of synthesizing
visualization programs using refinement types. Before doing so,
we will first define Calico’s table transformation language, and
then present Calico’s refinement type system and its subtyping
relation.

𝑃 ::= 𝑡 ≫ 𝑒1 ≫ · · · ≫ 𝑒𝑛 Table program
𝑒 ::= Table operators

| select(−→𝑐) Projection
| filter(∼, −−→𝑐arg) Filtering
| mutate(𝑐target, ⊗, −−→𝑐arg) Calculation
| spread(−→𝑐id, 𝑐key, 𝑐val) Pivoting (wider)
| gather(−→𝑐id, −−−→𝑐target) Pivoting (longer)
| summarize(−−→𝑐key, 𝑐target, ⊖, −−→𝑐arg) Summarization

∼ ::= = | ≠ | ≤ | < | 𝑅 Predicates
⊗ ::= + | − | ∗ | /| 𝑀 Arithmetic operation
⊖ ::= min | max | sum | count | avg Aggregate operation

| 𝐺 Custom operator

Figure 2: Syntax of Calico’s table transformation language

3.1 Table Transformation Language

Figure 2 shows the syntax of our table transformation language, in-
spired by real-world languages and frameworks for data wrangling
and table transformation (e.g., R and SQL). A Calico table program
𝑃 is a sequence 𝑒1, . . . , 𝑒𝑛 of table operators applied sequentially to
an input table 𝑡 . After each operation, an intermediate table is pro-
duced, and the last intermediate table is said to be the output table.
Each table is a collection of ordered records (i.e., name-indexed
tuples). Each tuple element is called a cell. We refer to the collection
of cells indexed by the same name as a column of a table, and each
item in the table collection as a row.

A table operator introduces new columns/rows to or eliminates
existing columns/rows from the incoming table. The semantics of
each operator is as follows:

(1) The select operator projects the specified columns −→𝑐 from
the input table. That is, it retains the subset of columns
named in −→𝑐 and drops the remaining columns.

(2) The filter operator retains the rows of the input table that
satisfy the given predicate ∼. A predicate is a binary relation
that takes two column names as inputs and includes equal-
ity, inequality, less-than-or-equal-to, less-than, or a custom
predicate1: 𝑅.

1For simplicity, we omit from our presentation non-binary relations and constants,
but Calico can be extended to support them with ease.

1873

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Jingtao Xia, Junrui Liu, Nicholas Brown, Yanju Chen, and Yu Feng

T ::= ⟨−→𝜅𝑖 ; −→𝜌 𝑗 ⟩ Table type
𝜅 ::= 𝑐 :: 𝜏 Column type
𝜌 ::= ⟨−→𝜎𝑖 ⟩ Row type
𝜎 ::= 𝑐 :: 𝜏 Cell type
𝜏 ::= {𝜈 : 𝐵 | 𝜙 } Refinement type
𝐵 ::= Base types

| Enum Enumeration
| Int | Real Numeric

𝜙 ::= Logical Qualifiers

| true Truth
| ¬𝜙 | 𝜙 ∧ 𝜙 | 𝜙 ∨ 𝜙 Connectives
| 𝑒 ≺+ L | 𝑒 ≺− L Provenance
| 𝑒 ⊳+ O | 𝑒 ⊳− O Relevant operators
| 𝑒1 ≤ 𝑒2 | 𝑒1 = 𝑒2 Comparison

𝑒 ::= Expressions

| 𝑥 Identifier
| 𝑐 Constant
| 𝑒1 ⊕ 𝑒2 Binary operation

Figure 3: Syntax of Calico’s refinement type system

(3) The spread operator is a pivot operation that takes columns
𝑐key and 𝑐val representing key-value pairs, and pivots the
table by (i) eliminating those two columns, (ii) creating a new
column named after each value in 𝑐key, and (iii) filling in the
cells in the newly created column using the corresponding
values from 𝑐val. spread effectively makes a table “wider.”

(4) The gather operator is the inverse of spread. Given a set of
columns −−−−→𝑐target, it treats the column names in −−−−→𝑐target as keys,
and cells in those columns as values. It then pivots the table
by eliminating −−−−→𝑐target and creating two columns that contain
the keys and the values, respectively. In effect, gathermakes
a table “longer.”

(5) The summarize operator first partitions the table into groups
where each group contains the same −−→𝑐key. Next, it aggregates
each group using the specified aggregate operation, which
can be min, max, sum, count, avg, or a custom aggregate
operation 𝐺 .

Given a table transformation program 𝑃 , we say the program
is a sketch, or a partial program, if some arguments to the table
operators are holes (□) that are yet to be determined. We say that a
program is complete if it does not contain any holes.

3.2 Calico’s Refinement Type System

The purpose of Calico’s refinement type system is twofold: (i)
to present the user with an expressive language to specify the
desired output; (ii) to enable the Calico synthesizer to prune away
infeasible programs from the search space as early as possible.

The language of Calico’s refinement type is described in Fig-
ure 3:
• At the top level is the table type T , which describes individual
tables. Each table type consists of a collection of column types
𝜅 and row types 𝜌 .
• A column (resp. row) type describes the properties of a col-
umn (resp. row) of the table. A column type is of form 𝑐 :: 𝜏
that maps the column name 𝑐 to a refinement type 𝜏 . A row

type 𝜌 consists of a sequence of cell types 𝜎 of the form
𝑐 :: 𝜏 , where 𝑐 is the column name of the cell, and 𝜏 is the
refinement type that describes the cell.
• A refinement type {𝜈 : 𝐵 | 𝜙} consists of a base type (i.e.,
Enum, Int, or Real) equipped with a logical qualifier 𝜙 that
refines the set of values that can be chosen from the base
type. The qualifier 𝜙 is a formula built from true, logical con-
nectives (i.e.,negation, conjunction, and disjunction), range
comparisons between expressions, and domain-specific pred-
icates.
• Calico’s domain-specific predicates include the provenance
predicate 𝑒 ≺ L, which tracks the lineage of data flow from
the input table to the current column/cell, as well as the
related-operator predicate 𝑒 ⊳ O, which maintains the set of
table operators used to compute the current column/cell. The
polarity of ≺ and ⊳ indicates under- vs. over-approximation.
That is, 𝑒 ≺+ L means that at least the set L of labels is
necessary to compute 𝑒 , while 𝑒 ≺− L indicates that the
maximum set of labels needed to compute 𝑒 is L. Calico’s
domain-specific predicates not only provide the end users
with a relatively precise specificationmechanismwithout the
need for manual calculation, but also enable the synthesizer
to effectively narrow down the potential candidate programs.

We use judgments of the form ⊢ 𝑡 : T to mean table 𝑡 has type
T . We elide the details of this judgment due to its straightforward
nature.

3.3 Problem statement

With the definitions of the table transformation language and the
refinement type system established, we can formally define our
problem:
Visualization program synthesis. Given an input table 𝑡in and
a type Tout, the visualization program synthesis problem is to find
a table transformation program 𝑃 such that, if executing 𝑃 on 𝑡in
produces the output table 𝑡out, then ⊢ 𝑡out : Tout, which means that
the output table satisfies the user-specified type Tout.

4 Algorithm

In this section, we give an overview of our synthesis algorithm.
However, because bidirectional type checking analysis is one of the
main contributions of this paper, we defer a detailed discussion to
Section 5.

Algorithm 1 shows Calico’s main synthesis algorithm. The
Synthesize procedure takes as parameters the input table 𝑡in, the
type Tout of the output table, and an integer 𝑘 that indicates the
maximum length of synthesized programs. The procedure first
infers the type Tin of 𝑡in; this can be done in a straightforward way
since the input table is concrete. Next, it enumerates all sketches
up to length 𝑘 and stores them to work list 𝑆 .

The core synthesis loop (L4-15) will gradually fill out each sketch
with concrete arguments until the first viable program is found. At
each iteration, the search procedure analyzes the next sketch 𝑃∗ in
the work list.

The key insight of Calico’s synthesis search is that even if
a program is incomplete, we can over-approximate its behavior
using types. If the over-approximated behavior does not satisfy

1874

Refinement Types for Visualization ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

⊢ 𝑡 : ⟨−−−−→𝑐𝑖 :: 𝜏𝑖 ⟩
−→
𝑐′𝑗 ⊆

−→
𝑐𝑖

⊢ 𝑡 ≫ select(
−→
𝑐′𝑗) : ⟨

−−−−→
𝑐′𝑗 :: 𝜏 𝑗 ⟩

TF-Select ⊢ 𝑡 : ⟨−−−−→𝑐𝑖 :: 𝜏𝑖 ⟩
⊢ 𝑡 ≫ filter(_, _) : ⟨−−−−→𝑐𝑖 :: 𝜏𝑖 ⟩

TF-Filter

⊢ 𝑡 : ⟨−−−−→𝑐𝑖 :: 𝜏𝑖 ⟩ −→
𝑐𝑖 =

−→
𝑐𝑖𝑑 ⊎ {𝑐key} ⊎ {𝑐val} ⊨ 𝜏key <: {𝜈 : Enum | 𝜈 = 𝐴1 ∨ · · · ∨ 𝜈 = 𝐴𝑙 }

⊢ 𝑡 ≫ spread(−→𝑐id, 𝑐key, 𝑐val) : ⟨−−−−−→𝑐id :: 𝜏id, 𝐴1 :: 𝜏val, . . . , 𝐴𝑘 :: 𝜏val ⟩
TF-Spread

⊢ 𝑡 : ⟨−−−−→𝑐𝑖 :: 𝜏𝑖 ⟩ −→
𝑐𝑖 =

−→
𝑐id ⊎ −−−→𝑐target 𝜏𝑘𝑒𝑦 = {𝜈 : Enum | ∨

𝑐∈−−−−→𝑐target
𝜈 = 𝑐 } ⊨ 𝜏target <: 𝜏val for all 𝜏target ∈ −−−→𝜏target 𝑐key, 𝑐val fresh

⊢ 𝑡 ≫ gather(−→𝑐id, −−−→𝑐target) : ⟨−−−−−→𝑐id :: 𝜏id, 𝑐key :: 𝜏key, 𝑐val :: 𝜏val ⟩
TF-Gather

⊢ 𝑡 : ⟨−−−−→𝑐𝑖 :: 𝜏𝑖 ⟩ 𝑐1, 𝑐2 ∈ −→𝑐𝑖 ⊨ 𝜏1 <: {𝜈 : Int | 𝑥 ≤ 𝜈 } ⊨ 𝜏2 <: {𝜈 : Int | 𝑦 ≤ 𝜈 } 𝑐target ∉
−→
𝑐𝑖

⊢ 𝑡 ≫ mutate(𝑐target, +, [𝑐1, 𝑐2]) : ⟨−−−−→𝑐𝑖 :: 𝜏𝑖 , 𝑐target :: {𝜈 : Int | 𝑥 + 𝑦 ≤ 𝜈 }⟩
TF-MutateAdd

⊢ 𝑡 : ⟨−−−−→𝑐𝑖 :: 𝜏𝑖 ⟩ −−→
𝑐key ⊆ −→𝑐𝑖 𝑐target ∉

−→
𝑐𝑖

⊢ 𝑡 ≫ summarize(−−→𝑐key, 𝑐target, count,∅) : ⟨−−−−−−−→𝑐key :: 𝜏key, 𝑐target :: {𝜈 : Int | 0 ≤ 𝜈 }⟩
TF-SummarizeCount

Figure 4: Typing rules for forward analysis

Algorithm 1 Main synthesis algorithm
1: procedure Synthesize(𝑡in, Tout, 𝑘)
2: Tin ← inferType(𝑡in)
3: 𝑆 ← enumerateSkeches(𝑘)
4: while notEmpty(𝑆) do
5: 𝑃∗ ← 𝑆.pop()
6: T𝑓 ← forward(𝑃∗, Tin, 𝑡in)
7: T𝑏 ← backward(𝑃∗, Tout)
8: if ⊨ T𝑓 ⊲⊳ T𝑏 then

9: if 𝑃∗ is complete and ⊢ 𝑃∗ (𝑡in) : Tout then
10: yield 𝑃∗

11: else

12: 𝑆 .extend(expand(𝑃∗))
13: end if

14: end if

15: end while

16: return ⊥
17: end procedure

⊨ 𝑇 <: 𝑇
S-Refl

⊨ 𝑇1 <: 𝑇2 ⊨ 𝑇2 <: 𝑇3
⊨ 𝑇1 <: 𝑇3

S-Trans

⊢ 𝑡 : 𝑇1 ⊨ 𝑇1 <: 𝑇2
⊢ 𝑡 : 𝑇2

S-Sub

∀𝜈, [[𝜙1]] =⇒ [[𝜙2]] is valid
⊨ {𝜈 : 𝐵 | 𝜙1} <: {𝜈 : 𝐵 | 𝜙2}

S-Refine

Figure 5: Subtyping rules

the user specification, then any completion of the program will
not either. Hence, the sketch, which encodes a large amount of the
search space, can be rejected early, preventing the synthesizer from
further exploration and branching.

This insight materializes in Calico’s forward and backward sub-
routines. The former infers the types of the intermediate tables

starting from the original input table (5.1). The latter performs
inference starting from the output type and works backward (5.2).
The two directions eventually meet, producing types T𝑓 and T𝑏 ,
respectively. Since we cannot use the table typing judgment to
check for the feasibility of the current program as we have no
concrete tables to work with, we instead delegate the feasibility
query to a novel table subtyping relation, which asks whether T𝑓 is
consistent with T𝑏 (5.3). Intuitively, this checks whether T𝑓 has at
least the columns and rows required by type T𝑏 .

If the consistency relation holds, the synthesis procedure returns
𝑃∗ in case it is complete (i.e. does not contain any hole) and running
the program produces an output table that satisfies the output type.
Otherwise, we enumerate all possible ways in which 𝑃∗ can be
expanded (i.e. one hole being replaced) in a breadth-first manner,
and add the expended sketches to the work list. Finally, if all pro-
grams are exhausted, the procedure reports ⊥ to indicate that the
synthesis problem is unsatisfiable.

5 Pruning via Bidirectional Type Inference

As is evident from the discussion above, a key part of our synthesis
algorithm is the forward and backward inference to generate type
consistency constraints. These procedures are described in Figure 4
and Figure 6 using inference rules.

5.1 Typing Rules for Forward Analysis

The typing rules for forward analysis are shown in Figure 4. In
particular, each rule computes the refinement type of the output
table based on the table transformation language defined in Figure 2.

(1) select: The select operator retains columns given as argu-
ments

−→
𝑐′
𝑗
while removing everything else. Therefore, the

refinement types of
−→
𝑐′
𝑗
will be the type of the output table.

(2) filter: Because the filter operator does not alter columns of
the input table, the refinement type of the output table should
match the type of the input table.

(3) spread: The spread function turns the table to a wider format.
It moves cells from the 𝑐val column to new columns, whose

1875

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Jingtao Xia, Junrui Liu, Nicholas Brown, Yanju Chen, and Yu Feng

⊢ 𝑡 ≫ select(_) : T
⊢ 𝑡 : T

TB-Select

⊢ 𝑡 ≫ filter(_, _) : ⟨−−−−→𝑐𝑖 :: 𝜏𝑖 ⟩ 𝜏 ′𝑖 = {𝜈 : 𝐵 | true} for all 𝑖 and 𝜏𝑖 = {𝜈 : 𝐵 | 𝜙 }

⊢ 𝑡 : ⟨
−−−−→
𝑐𝑖 :: 𝜏 ′𝑖 ⟩

TB-Filter

⊢ 𝑡 ≫ spread(−→𝑐id, _, _) : ⟨−−−−→𝑐𝑖 :: 𝜏𝑖 ⟩ −→
𝑐𝑖 =

−→
𝑐id ⊎ −→𝑐 𝑗 ⊨ 𝜏 𝑗 <: 𝜏val for all 𝑗 𝜏key = {𝜈 : Enum | ∨

𝑐∈−→𝑐 𝑗 𝜈 = 𝑐 } 𝑐key, 𝑐val fresh

⊢ 𝑡 : ⟨−−−−−→𝑐id :: 𝜏id, 𝑐key :: 𝜏key, 𝑐val :: 𝜏val ⟩
TB-Spread

⊢ 𝑡 ≫ gather(−→𝑐𝑖𝑑 , _) : ⟨−−−−→𝑐𝑖 :: 𝜏𝑖 ⟩ −→
𝑐𝑖 =

−→
𝑐id ⊎ {𝑐key, 𝑐val} ⊨ 𝜏key <: {𝜈 : Enum | 𝜈 = 𝐴1 ∨ · · · ∨ 𝜈 = 𝐴𝑙 }

⊢ 𝑡 : ⟨−−−−−→𝑐id :: 𝜏id, 𝐴1 :: 𝜏val, . . . , 𝐴𝑛 :: 𝜏val ⟩
TB-Gather

⊢ 𝑡 ≫ mutate(𝑐target, _, _) : ⟨−−−−→𝑐𝑖 :: 𝜏𝑖 ⟩ −→
𝑐𝑖 =

−→
𝑐 𝑗 ⊎ {𝑐target}

⊢ 𝑡 : ⟨−−−−→𝑐 𝑗 :: 𝜏 𝑗 ⟩
TB-Mutate

⊢ 𝑡 ≫ summarize(_, 𝑐target, _, _) : ⟨−−−−→𝑐𝑖 :: 𝜏𝑖 ⟩ −→
𝑐𝑖 =

−→
𝑐 𝑗 ⊎ {𝑐target}

⊢ 𝑡 : ⟨−−−−→𝑐 𝑗 :: 𝜏 𝑗 ⟩
TB-Summarize

Figure 6: Typing rules for backward analysis

names come from the cells in the 𝑐key column. As a result, we
maintain the column refinement type for all columns in −→𝑐id,
which is the complement of

{
𝑐val, 𝑐key

}
. Then, we introduce

new columns for each name in 𝑐key. These new columns will
have the same refinement type as 𝑐val, as they are subsets of
𝑐val.

(4) gather: The gather operation is the inverse of the spread
operation. It transforms the table into a longer format by
consolidating all values in −−−−→𝑐target into a new column, 𝑐val,
while the column names in −−−−→𝑐target appear correspondingly in
the new column 𝑐key. Therefore, the rule states that the col-
umn refinement type of 𝑐key is an Enum type with elements
collected from the names of −−−−→𝑐target. The column type of 𝑐val
is the super-type of all value types of cells collected from
−−−−→𝑐target. (The typing rules for subtype/super-type judgment of
the form ⊨ 𝑒 <: 𝜏 are presented in Figure 5.) Finally, the re-
finement type of the output table is composed of the original
columns that are not selected (i.e., −→𝑐id) and the refinement
types of new columns −−→𝑐key and −−→𝑐val.

(5) mutate: The mutate operation generates a new column,
𝑐target, whose values are obtained by performing a binary
operator ⊗ to the cells of two selected columns, namely 𝑐1
and 𝑐2. Therefore, the output table’s type will be the union
of the type of the input table and the type of the new column
𝑐target. The TF-MutateAdd rule shows the case where the
binary operator is +.

(6) summarize: The summarize operation functions similarly
to mutate, but it performs aggregate operation ⊖ based on
the group −−→𝑐key. The rule here for summarize is instantiated
with the count aggregate operation. The rule states that the
refinement type of the output table is comprised of the set of
columns −−→𝑐key that is used in a group, and the 𝑐target column
that is aggregated upon. For the count aggregator, the rule
over-approximates the value of each cell in column 𝑐target

by adding a logical qualifier stating that all values are non-
negative.

Accordingly, these rules are applicable to general functions with
an arbitrary number of arguments, providing flexibility for various
use cases. The refinement type of the input table, which is the
initial state of the forward analysis, can be generated easily without
manual effort.

5.2 Typing Rules for Backward Analysis

The rules for backward analysis are presented in Figure 6. In the
backward analysis, our goal is to infer the refinement types of input
table 𝑡 from the given table operator and the refinement type of the
output table. The initial state of the backward analysis is the type
of the output table specified by the user.

A naive backward analysis that explores the entire search space
is unlikely to scale. To mitigate this issue, our backward typing rules
work with symbolic program sketches whose arguments may be
unknown. We will use the symbol _ to stand for the parts that have
not been enumerated. However, a key design decision is that our
analysis does not compute the strongest necessary preconditions to
ensure that the cost of type checking does not outweigh the benefits.
Intuitively, as more enumeration is performed, we can gain more
information, but this may also result in exploring a larger search
space.

(1) select: This rule states that the input table has the same type
as the output.

(2) filter: To prevent the synthesizer from eagerly enumerating
complex arguments of the filter operator, rule TB-Filter
over-approximates the refinement type of the input table by
keeping it the same as the refinement types of the output
table except for weakening the logical qualifier 𝜙 to true.

(3) gather: The refinement types of the incoming table for the
gather operator are composed of two parts: 1) the subset of
columns −−−−−−→𝑐id :: 𝜏id that is not affected by the pivoting, and 2)

1876

Refinement Types for Visualization ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

𝜅′𝑖 = 𝜅𝑖 [𝑐 ↦→ 𝑐′] for all 𝑖 ∈ {1..𝑚} 𝜌 ′𝑗 = 𝜌 𝑗 [𝑐 ↦→ 𝑐′] for all 𝑗 ∈ {1..𝑛}

⊨ ⟨−→𝜅𝑖 ; −→𝜌 𝑗 ⟩𝑖∈{1..𝑚}, 𝑗 ∈{1..𝑛} ⊲⊳ ⟨
−→
𝜅′𝑖 ;
−→
𝜌 ′𝑗 ⟩𝑖∈{1..𝑚}, 𝑗 ∈{1..𝑛}

C-Rename

−→
𝑐′𝑖 ,
−→
𝜅′𝑖 is a permutation of −→𝑐𝑖 , −→𝜅𝑖 by exchanging columns 𝑘 and 𝑙 𝜌 ′𝑗 = ExchangeColumn(𝜌 𝑗 , 𝑘, 𝑙) for all 𝑗 ∈ {1..𝑛}

⊨ ⟨−→𝜅𝑖 ; −→𝜌 𝑗 ⟩𝑖∈{1..𝑚}, 𝑗 ∈{1..𝑛} ⊲⊳ ⟨
−→
𝜅′𝑖 ;
−→
𝜌 ′𝑗 ⟩𝑖∈{1..𝑚}, 𝑗 ∈{1..𝑛}

C-PermCol

−→
𝜌 ′𝑖 is a permutation of −→𝜌𝑖

⊨ ⟨−→𝜅𝑖 ; −→𝜌 𝑗 ⟩𝑖∈{1..𝑚}, 𝑗 ∈{1..𝑛} ⊲⊳ ⟨−→𝑐𝑖 ;
−→
𝜌 ′𝑗 ⟩𝑖∈{1..𝑚}, 𝑗 ∈{1..𝑛}

C-PermRow

0 ≤ 𝑘 0 ≤ 𝑙 𝜌 ′𝑗 = RemoveColumn(𝜌 𝑗 ,𝑚..𝑘) for all 𝑗 ∈ {1..𝑛}
⊨ ⟨−→𝜅𝑖 ; −→𝜌 𝑗 ⟩𝑖∈{1..𝑚+𝑘}, 𝑗 ∈{1..𝑛+𝑙 } ⊲⊳ ⟨−→𝜅𝑖 ; −→𝜌 𝑗 ⟩𝑖∈{1..𝑚}, 𝑗 ∈{1..𝑛}

C-Subtable

⊨ 𝜅𝑖 ⊲⊳ 𝜅
′
𝑖 for all 𝑖 ∈ {1..𝑚} ⊨ 𝜌 𝑗 ⊲⊳ 𝜌 ′𝑗 for all 𝑗 ∈ {1..𝑛}

⊨ ⟨−→𝜅𝑖 ; −→𝜌 𝑗 ⟩𝑖∈{1..𝑚}, 𝑗 ∈{1..𝑛} ⊲⊳ ⟨
−→
𝜅′𝑖 ;
−→
𝜌 ′𝑗 ⟩𝑖∈{1..𝑚}, 𝑗 ∈{1..𝑛}

C-Depth

⊨ 𝜏1 ⊲⊳ 𝜏2

⊨ 𝑐 :: 𝜏1 ⊲⊳ 𝑐 :: 𝜏2
C-Col

⊨ 𝜎1 ⊲⊳ 𝜎
′
2 for all 𝑖 ∈ {1..𝑛}

⊨ ⟨𝜎1, . . . , 𝜎𝑛 ⟩ ⊲⊳ ⟨𝜎 ′1, . . . , 𝜎 ′𝑛 ⟩
C-Row

⊨ 𝜙1 ⊲⊳ 𝜙2

⊨ {𝜈 : 𝐵 | 𝜙1} ⊲⊳ {𝜈 : 𝐵 | 𝜙2}
C-Refine

[[𝜙1]] ∧ [[𝜙2]] is satisfiable
⊨ 𝜙1 ⊲⊳ 𝜙2

C-SAT
L ⊆ L′

⊨ 𝜈 ≺+ L ⊲⊳ 𝜈 ≺− L′
C-Prov

O ⊆ O′

⊨ (𝜈 ⊳+ O) ⊲⊳ (𝜈 ⊳− O′)
C-Ops

Figure 7: Rules for checking type consistency

a list of columns 𝐴1, ..., 𝐴𝑛 selected by the gather operator.
In particular, the column name of 𝐴𝑖 can be derived from
the enum value of the 𝑐key column in the output table. The
refinement type of each cell in 𝐴𝑖 is obtained by asserting
that it is the super-type of all refinement types of cells that
appear in columns −→𝑐 𝑗 .

(4) spread: The refinement types of incoming table for the spread
operator contain three parts: 1) the subset of columns−−−−−−→𝑐id :: 𝜏id
that is not affected by the pivoting, 2) the refinement type
of 𝑐key column, and 3) the refinement type of 𝑐val column.
Since we do not know the concrete values of key and val
columns, we assert that the refinement type of 𝑐key column
is the enum type of −→𝑐 𝑗 , i.e., all column names of the output
column refinement types except for the ones appearing in
−→𝑐id. Finally, the refinement type of 𝑐val column asserts that
the refinement type of each cell in 𝑐val is the supertype of
all refinement types of cells that appear in columns −→𝑐 𝑗 .

(5) mutate: In this case, we only require 𝑐target to be concrete.
The type of the input table for the mutate operator is ob-
tained by removing the new column 𝑐target from the type of
the output table.

(6) summarize: Similar to the mutate operation, the type of the
input table for the summarize operator is over-approximated
by removing the new column 𝑐target from the type of the
output table.

5.3 Type Consistency

The forward and backward analyses perform type inference start-
ing from the both ends of a (possibly incomplete) table program
𝑃∗. The two analyses eventually meet, producing types T𝑓 and T𝑏
respectively. Those two types are used to determine the feasibility
of 𝑃∗ using the type consistency relation:

⊨ T𝑓 ⊲⊳ T𝑏 ,

which denotes that T𝑓 is consistent with T𝑏 . The inference rules for
this relation are shown in Figure 7. Essentially, T1 is consistent with
T2 if T1 provides the columns and rows required by T2, but T1 may
contain additional columns or rows. In what follows, we expand
upon each inference rule.

The rules C-Rename, C-PermCol, C-PermRow, and C-Subtable
stipulate that the consistency relation is invariant under various
reshaping and alignment operations, i.e., column renaming, permu-
tation of columns or rows, and adding columns/rows to the type
on the left-hand side of ⊲⊳2.

Once the shapes of the two participant types has been aligned,
rules C-Depth, C-Col, and C-Row decompose the shape, and pro-
duce consistency obligations on refinement types to be handled by
rule C-Refine.

The C-SAT rule says that two refinement types satisfy the con-
sistency relation if they are of the same base type, and that the
qualifier consistency relation, denoted by 𝜙1 ⊲⊳ 𝜙2, holds. In general,

2We note that C-Subtable is a generalization of the standard width subtyping for
record type.

1877

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Jingtao Xia, Junrui Liu, Nicholas Brown, Yanju Chen, and Yu Feng

rule C-SAT can be used to check qualifier consistency by encoding
it into a satisfiability query of the formula [[𝜙1]] ∧ [[𝜙2]]. Any qual-
ifier implication involving Calico’s domain-specific qualifiers is
checked using C-Prov and C-Ops rules. These two rules ensure that
an under-approximation never exceeds an over-approximation.

Finally, our bidirectional type inference is sound. We use ⊢ 𝑡 ⇒
T (resp. ⊢ T ⇐ 𝑡) to denote that forward (resp. backward) inference
assigns type T to 𝑡 .

Theorem 1 (Soundness). Let 𝑡 be an arbitrary table, 𝑒 be a table
operator, and 𝑡 ′ = [[𝑒]] (𝑡). Then,

(1) ⊢ 𝑡 : T and ⊢ 𝑡 ′ ⇒ T ′ implies ⊢ 𝑡 ′ : T ′,
(2) ⊢ 𝑡 ′ : T ′ and ⊢ T ⇐ 𝑡 implies ⊢ 𝑡 : T .

6 Implementation

We have implemented the proposed idea in a tool called Calico
with 3,587 lines of code in Python. We use the Pandas library [18]
for table transformation, and the Vega-Lite library [23] for visual-
ization. In what follows, we elaborate on other key implementation
decisions.

Rendering visualization from tables. Similar to Viser [28],
Calico needs to convert a table into its visualization, with addi-
tional visual properties attached, such as colors, shapes, etc. In
particular, Calico invokes the Vega-Lite [27] visualization tool
to render the visualization from the resulting table. This reduces
the complex visualization to a succinct format that is amenable to
existing data-wrangling DSL.

Global operator checking. Calico maintains a relevant set
of operators in logical qualifiers for each column refinement type.
However, adopting a global perspective on operator requirements
can improve pruning power. Specifically, Calico gathers the set
denotedO𝑔 of all operatorsmentioned in the output typeTout.When
analyzing a partial program 𝑃∗,Calico collects all operators used in
the concrete part of the program as O𝑐 , and estimates whether the
abstract part can satisfy the remaining requirements O𝑔 \ O𝑐 . This
approach can be generalized into typing checking rules concerning
input tables after forward analysis and initial output tables. The
global operator set checking can prune some sketches without
generating backward inference trees, thereby enhancing pruning
efficiency.

User-defined functions. To enhance flexibility, Calico allows
users to define uninterpreted functions for mutate and summarize.
These functions may have arbitrary annotated arity. For mutate,
users need to provide a function that maps a list of values to a
typed value. For summarize, users need to provide a function that
maps a list of vectors (Series in pandas’ terminology) to a typed
value, e.g.,𝐺 (𝑥,𝑦) = 𝑠𝑢𝑚(𝑥)/𝑠𝑢𝑚(𝑦). This distinction explains why
we separate −−→𝑐arg from 𝑐target in our table transformation language,
instead of using the common aggregate function definition where
the 𝑐target overwrites the single provided argument.

We also introduce a generalized form of mutate called mutateG
(grouped mutate), where the function can access aggregated values
within a group. Unlike summarize, mutateG operates similarly to
the partition operation in SQL. Users need to provide a function
that maps a list of vectors to a typed vector, e.g., 𝐻 (𝑥) = 𝑥/𝑠𝑢𝑚(𝑥).
Such a grouped mutate operation will not influence subsequent
operations with its group.

Extended refinement type. We note that Calico’s refinement
type system can be extended to handle a wider range of qualifiers.
For example, the related operator qualifier 𝜈 ⊳ O denotes the mini-
mum set of operators that need to be used during the computation
of the current columns. However, we can easily introduce a sym-
metric qualifier 𝜈 ≺ Omax to denote the maximum set of operators
that can be used. Similar extensions could be applied to provenance,
enumeration range, etc. The typing rules for bidirectional analysis
can be similarly extended in a straightforward fashion.

7 Evaluation

In this section, we describe the results of the experimental evalua-
tion, which is designed to answer the following research questions:
• RQ1. Effectiveness: Can Calico solve more visualization
tasks than state-of-the-art approaches within a given time
limit?
• RQ2. Scalability: Does Calico improve task-solving time
compared to state-of-the-art approaches?
• RQ3. Ablation: How important are the individual refine-
ment type rules for forward and backward analysis?

Benchmarks.We evaluateCalico on a suite of 40 benchmarks col-
lected from various sources, including prior work such asViser [28]
and online technical forums like StackOverflow3. The benchmark
suite contains a variety of problems that require a wide range of
data wrangling operations (e.g., projection, aggregation, mutation,
and filtration) over the inputs, with various target visualization
types (e.g., bar charts, pie charts, line charts). To ensure the qual-
ity of the collected benchmarks, we incorporate a semi-automatic
semantic parsing procedure with manual checking to prove the syn-
thesizer with a refinement annotation that is accurate and captures
the precise user intent.

Experimental Setup.We compareCalicowith the state-of-the-art
visualization synthesis tools,Viser [28], which is an example-driven
synthesizer and does not support refinement-type-based reasoning.

All experiments are performed on MacBook Pro with 2.4 GHz
Quad-Core Intel Core i5 processor and 16 GB of memory. The time
limit for a single problem is set to 15 minutes.

7.1 Comparison on Effectiveness

To ensure a fair comparison between Calico and Viser, we extend
Viser to make sure that both tools: 1) take the same types of in-
put, and 2) incorporate DSL constructs to support all benchmarks.
In addition, as a baseline approach, we feed the specification of
each benchmark to a large language model (LLM)4 and prompt
it to generate solution programs as the output. Figure 9 shows a
performance comparison among Calico, Viser, and baseline LLM
in terms of the total number of benchmarks solved within a given
time limit.

Across all 40 benchmarks, Calico solves 39 (98%) of them. In
comparsion, Viser solves 29 (73%) of them, and is slightly better
than the baseline LLM approach, which solves 27 (68%) of the bench-
marks. As a result, Calico solves 25% more benchmarks than Viser,
and 30% more than LLM.

3https://stackoverflow.com/
4We use ChatGPT 3 at the time of experiments.

1878

https://stackoverflow.com/

Refinement Types for Visualization ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
5/6/23, 12:22 AM Chart

about:blank 1/1

0 10 20 30 40
#Solved

0

1,000

2,000

To
ta

l T
im

e
(s

)

0 10 20 30 40
#Solved

0

50

100

To
ta

l T
im

e
(s

) Calico
Viser Tool

Calico

Calico

Viser

Viser

Figure 8: Scalability comparison between Calico and Viser on visualization tasks. Each curve measures the changes of total

time cost as the number of solved benchmarks grows. Left: Statistics over all benchmarks solved; Right: Statistics over all

non-long-tailed benchmarks solved.

0 10 20 30 40

#Solved

LLM

Viser

Calico

27 (68%)

29 (73%)

39 (98%)

Viser
Calico
LLM

Tool

Figure 9: Effectiveness comparison between Calico, Viser

and baseline LLM on visualization tasks. Each bar is tagged

with the total number of benchmarks solved as well as the

percentage.

Result for RQ1: As is evident from these numbers, Calico
is more effective than Viser, the state-of-the-art visualization
synthesis tool.

7.2 Comparison on Scalability

In addition to the total number of visualization tasks solved, another
important evaluationmetric is the time required to find the intended
solution for each task. This metric is particularly important since in
real-world scenarios, it reflects how much time a user has to wait
before he or she is provided with a candidate to choose from.

Figure 8 shows two cactus plots comparing Calico and Viser
regarding the cumulative problem-solving time across all visualiza-
tion tasks. In particular, it measures the trend over the total time
required for solving each visualization task. As indicated by the
plot on the left, Calico takes significantly less time than Viser
over all the benchmarks each tool can solve. The growth of Viser’s
curve is almost exponential, Calico remains at a low level. This
shows the overall effectiveness of Calico’s refinement type system
in terms of its pruning power.

In addition to the overall comparison, we further narrow down
our scope to exclude those long-tailed benchmarks on which both
tools spend significantly more time. On the right of Figure 8 shows
both trends in a more fine-grained way. We find Calico is still
showing a near-linear time growth for most of the benchmarks.
Such an observation further confirms the improvement of Calico
over Viser in terms of scalability.

Our analysis on the scalability of both tools shows that the
average time cost for Calico to solve each visualization task is 1.56,
while the average time cost for Viser is 78.55s. That is, Calico
is 50× faster than Viser on when it comes to visualization tasks
successfully solved by themselves respectively. For benchmarks
that can be solved by both tools, Calico continues to outperform

Viser, with a 0.35s average time cost compared to Viser’s 80.41s,
resulting in a 228× speed-up.

Result for RQ2: Calico is scalable in that it brings a significant
speed-up over the state-of-the-art tool Viser for solving each
benchmark.

7.3 Ablation Study

5/6/23, 12:31 AM Chart

about:blank 1/1

0 1 2
Averaged Time (s)

Calico-NR

Calico

1.91 (96% solved)

1.56 (98% solved)
Calico
Calico-NR

Tool

Figure 10: Performance comparison between Calico and

its ablative version Calico-NR on visualization tasks. Each

bar is tagged with the average time spent in solving and the

percentage of benchmarks solved.

Recall that in Section 3.2, we introduce domain-specific predi-
cates to prune the search space more effectively. To evaluate the
effectiveness of those predicates, we perform an ablation study to
compare Calico against Calico-NR, a Recall that a related operator
keeps track of a set of table operators used to compute the target
column or cell. The related operator predicate provides a relatively
precise specification mechanism, which helps with pruning during
synthesis.

To study the effectiveness and scalability of the related operator
predicate, we measure the total number of visualization tasks solved
and the average time needed to solve each of them.

Figure 10 shows the ablative results. As the full-fledged version
of Calico can solve 39 benchmarks, we can see a 3% performance
drop in total number of solved benchmarks if the related operator
predicate is removed(Calico-NR), and Calico-NR requires 22%
more time on average.

Result for RQ3: The related operator predicate contributes
to the performance of Calico. It is effective and helpful to the
overall design of the system.

7.4 A Discussion on Usability

We carry out a simple user study to better understand the usability
of Calico’s refinement types. In particular, participants with a basic
background in data analytics are asked to write annotations for
given benchmarks in addition to existing input-output examples.

1879

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Jingtao Xia, Junrui Liu, Nicholas Brown, Yanju Chen, and Yu Feng

We ask the participants to score the usability of the refinement type
system on a scale of 1 (very easy to use) to 5 (very difficult to use).
On average, the participants gave a score of 1.8, which indicates that
they find refinement types annotations helpful and straightforward
to provide in the majority of the cases, despite some additional
learning curve.

7.5 Threat to Validity

There are two major threats to the validity of our conclusions,
which we explain below.

Benchmark selection. Due to the expressiveness of the DSL, our
benchmarks may not represent the actual distribution of the ques-
tions on StackOverflow. While the evaluation on the current bench-
marks may not completely unveil the benefit of our approach and a
representative test suite may provide a more comprehensive view,
we believe our comparison and benchmarks are sufficient to show
the strength of our technique. In particular, our dataset includes
all difficult benchmarks from Viser [28] and additional complex
benchmarks collected from StackOverflow.

Refinement-type annotations. Refinement types may impose an
additional learning curve on the users, which could affect the us-
ability of Calico. Although there are cases where input-output ex-
amples are straightforward to provide, we do observe that there are
many cases where refinement types are more intuitive, especially
for cases involving complex arithmetic operations or relational
constraints. In our experience, the refinement-type specification of
all benchmarks can be easily translated from the problem descrip-
tion in English on StackOverflow, taking only a several minutes on
average.

8 Related Work

There has been growing interest in automating the process of visu-
alization generation via approaches from different research com-
munities. In what follows, we discuss prior work in this space that
is most closely related to our work.

8.1 Example-Driven Program Synthesis

There has been a long line of work that uses programming-by-
examples (PBE) techniques to automate tedious programming tasks
for various domains, e.g., string and regular expression manipula-
tion [3, 5, 11, 33], SQL query [32, 34], table and tensor transforma-
tion [4, 6, 7], and more recently visualization synthesisViser [28,
29, 31]. However, programming-by-example typically requires the
user to encode her full intent using concrete examples, which may
be either arduous or outright impossible in the presence of complex
visualizations. In particular, tools like SQLSynthesizer [32] andMor-
pheus [7] require full input-output examples in search of a solution,
and FlashFill [10] usually requires more than one pair of input-
output examples to resolve ambiguity. While Viser [28] accepts
partial or incomplete examples as specifications, in a real-world
use case scenario, it requires the user to pick the solution that best
matches her intent. Our work, Calico, is based on example-driven
program synthesis, but differs from prior work in that it allows the
user to specify more details via refinement types while keeping
the examples partial, which provides the flexibility for a partial but
precise specification.

8.2 Refinement Types

Refinement types [9, 21] are type systems first introduced to en-
hance basic types with logical predicates. Previous works have ap-
plied variants of refinement types for program verification and pro-
gram synthesis [8, 12, 13, 16, 17, 20, 26]. For example, SolType [26]
builds a refinement type system for reasoning about arithmetic
properties; Synqid builds upon bidirectional synthesis and liquid
types for synthesis of recursive functions that are provably correct.
Most recent work, Graphy [2] also combines refinement types with
natural languages to provide finer-grained specification for visu-
alization synthesis. Our work follows the line of work that builds
upon refinement types, but focuses on the domain of visualization
synthesis with a design of a scalable and effective type system.

8.3 Automated Visualization

Recent interest in automating visualization generation tasks has
been focusing on both visualization recommendation systems and
visualization exploration tools. Even though our work aligns more
with the former direction, where tools like Draco [15], CompassQL [30],
and ShowMe [14] prioritizes candidate visualizations according to
user specifications, allowing annotation of inputs in the form of re-
finement types also sets our work close to the direction of visualiza-
tion exploration, where tools like VisExamplar [22], Visualization-
by-Sketching [24] and Polaris [25] all provides richer ways for
encoding user inputs.

9 Conclusion

We propose a new approach to visualization synthesis based on
refinement types. Users can specify complex interactions or calcula-
tions among visual components using refinement types. The output
of our system include both data transformation and visualization
programs that are consistent with the specification. To ensure scal-
ability and usability, we introduce a new visualization synthesis
algorithm that uses lightweight bidirectional type checking to prune
the search space.

We have implemented the proposed approach in a new tool called
Calico and evaluated it on 40 visualization tasks collected from
online forums and tutorials. Our experiments show that Calico can
solve 98% of these benchmarks and, among those benchmarks that
can be solved, the desired program is among the top-1 candidate
synthesized by Calico. Furthermore, Calico averages 1.56 seconds
when solving each visualization task, which is 50 times faster than
Viser, a state-of-the-art synthesizer for data visualization.

Data Availability

An implementation of Calico, along with the evaluation data and
scripts, is available as a Docker image5.

10 Acknowledgement

We thank the reviewers for their helpful comments. This work is
supported in part by NSF #1908494, DARPA N66001-22-2-4037, the
Google Faculty Research Awards, and the Ethereum Foundation
Academic Grants.

5https://hub.docker.com/r/calicosynth/calico

1880

https://hub.docker.com/r/calicosynth/calico

Refinement Types for Visualization ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

References

[1] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. 2011. D3 Data-Driven
Documents. IEEE Trans. Vis. Comput. Graph. 17, 12 (2011), 2301–2309. https:
//doi.org/10.1109/TVCG.2011.185

[2] Qiaochu Chen, Shankara Pailoor, Celeste Barnaby, Abby Criswell, Chenglong
Wang, Greg Durrett, and Işil Dillig. 2022. Type-Directed Synthesis of Visualiza-
tions from Natural Language Queries. Proc. ACM Program. Lang. 6, OOPSLA2,
Article 144 (oct 2022), 28 pages. https://doi.org/10.1145/3563307

[3] Qiaochu Chen, Xinyu Wang, Xi Ye, Greg Durrett, and Isil Dillig. 2020. Multi-
Modal Synthesis of Regular Expressions. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation (London, UK)
(PLDI 2020). Association for Computing Machinery, New York, NY, USA, 487–502.
https://doi.org/10.1145/3385412.3385988

[4] Yanju Chen, Chenglong Wang, Osbert Bastani, Isil Dillig, and Yu Feng. 2020.
Program Synthesis Using Deduction-Guided Reinforcement Learning. In Com-
puter Aided Verification, Shuvendu K. Lahiri and Chao Wang (Eds.). Springer
International Publishing, Cham, 587–610.

[5] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel rahman
Mohamed, and Pushmeet Kohli. 2017. RobustFill: Neural Program Learning under
Noisy I/O. In Proceedings of the 34th International Conference on Machine Learning
(Proceedings of Machine Learning Research, Vol. 70), Doina Precup and Yee Whye
Teh (Eds.). PMLR, 990–998. https://proceedings.mlr.press/v70/devlin17a.html

[6] Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. 2018. Program synthesis
using conflict-driven learning. In Proceedings of the 39th ACM SIGPLANConference
on Programming Language Design and Implementation, PLDI 2018, Philadelphia,
PA, USA, June 18-22, 2018, Jeffrey S. Foster and Dan Grossman (Eds.). ACM,
420–435.

[7] Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri.
2017. Component-Based Synthesis of Table Consolidation and Transformation
Tasks from Examples. In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation (Barcelona, Spain) (PLDI 17’).
Association for Computing Machinery, New York, NY, USA, 422–436. https:
//doi.org/10.1145/3062341.3062351

[8] Jonathan Frankle, Peter-Michael Osera, DavidWalker, and Steve Zdancewic. 2016.
Example-Directed Synthesis: A Type-Theoretic Interpretation. In Proceedings of
the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (St. Petersburg, FL, USA) (POPL ’16). Association for Computing Ma-
chinery, New York, NY, USA, 802–815. https://doi.org/10.1145/2837614.2837629

[9] Tim Freeman and Frank Pfenning. 1991. Refinement Types for ML. In Proceedings
of the ACM SIGPLAN 1991 Conference on Programming Language Design and
Implementation (Toronto, Ontario, Canada) (PLDI ’91). Association for Computing
Machinery, New York, NY, USA, 268–277. https://doi.org/10.1145/113445.113468

[10] Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-
output examples. In Proc. Symposium on Principles of Programming Languages.
ACM, 317–330.

[11] Sumit Gulwani, William R. Harris, and Rishabh Singh. 2012. Spreadsheet Data
Manipulation Using Examples. Commun. ACM 55, 8 (aug 2012), 97–105. https:
//doi.org/10.1145/2240236.2240260

[12] Tristan Knoth, Di Wang, Nadia Polikarpova, and Jan Hoffmann. 2019. Resource-
Guided Program Synthesis. In Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation (Phoenix, AZ, USA) (PLDI
2019). Association for Computing Machinery, New York, NY, USA, 253–268.
https://doi.org/10.1145/3314221.3314602

[13] Kenneth Knowles and Cormac Flanagan. 2009. Compositional Reasoning and
Decidable Checking for Dependent Contract Types. In Proceedings of the 3rd
Workshop on Programming Languages Meets Program Verification (Savannah, GA,
USA) (PLPV ’09). Association for Computing Machinery, New York, NY, USA,
27–38. https://doi.org/10.1145/1481848.1481853

[14] Jock Mackinlay, Pat Hanrahan, and Chris Stolte. 2007. Show Me: Automatic
Presentation for Visual Analysis. IEEE Transactions on Visualization and Computer
Graphics 13, 6 (2007), 1137–1144. https://doi.org/10.1109/TVCG.2007.70594

[15] Dominik Moritz, Chenglong Wang, Greg L. Nelson, Halden Lin, Adam M. Smith,
Bill Howe, and Jeffrey Heer. 2019. Formalizing Visualization Design Knowledge
as Constraints: Actionable and Extensible Models in Draco. IEEE Transactions on
Visualization and Computer Graphics 25, 1 (2019), 438–448. https://doi.org/10.
1109/TVCG.2018.2865240

[16] Peter-Michael Osera. 2019. Constraint-Based Type-Directed Program Synthesis.
In Proceedings of the 4th ACM SIGPLAN InternationalWorkshop on Type-Driven De-
velopment (Berlin, Germany) (TyDe 2019). Association for Computing Machinery,
New York, NY, USA, 64–76. https://doi.org/10.1145/3331554.3342608

[17] Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-Example-Directed
Program Synthesis. In Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation (Portland, OR, USA) (PLDI
’15). Association for Computing Machinery, New York, NY, USA, 619–630. https:
//doi.org/10.1145/2737924.2738007

[18] Pandas. 2023. pandas - Python Data Analysis Library. https://pandas.pydata.org/.

[19] Benjamin C. Pierce and David N. Turner. 2000. Local Type Inference. ACM Trans.
Program. Lang. Syst. 22, 1 (jan 2000), 1–44. https://doi.org/10.1145/345099.345100

[20] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program
Synthesis from Polymorphic Refinement Types. In Proceedings of the 37th ACM
SIGPLANConference on Programming Language Design and Implementation (Santa
Barbara, CA, USA) (PLDI ’16). Association for Computing Machinery, New York,
NY, USA, 522–538. https://doi.org/10.1145/2908080.2908093

[21] Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. 2008. Liquid types.
In Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language
Design and Implementation, Tucson, AZ, USA, June 7-13, 2008, Rajiv Gupta and
Saman P. Amarasinghe (Eds.). ACM, 159–169. https://doi.org/10.1145/1375581.
1375602

[22] Bahador Saket, Hannah Kim, Eli T. Brown, and Alex Endert. 2017. Visualization
by Demonstration: An Interaction Paradigm for Visual Data Exploration. IEEE
Transactions on Visualization and Computer Graphics 23, 1 (2017), 331–340. https:
//doi.org/10.1109/TVCG.2016.2598839

[23] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer.
2017. Vega-Lite: A Grammar of Interactive Graphics. IEEE Trans. Vis. Comput.
Graph. 23, 1 (2017), 341–350. https://doi.org/10.1109/TVCG.2016.2599030

[24] David Schroeder and Daniel F. Keefe. 2016. Visualization-by-Sketching: An
Artist’s Interface for Creating Multivariate Time-Varying Data Visualizations.
IEEE Transactions on Visualization and Computer Graphics 22, 1 (2016), 877–885.
https://doi.org/10.1109/TVCG.2015.2467153

[25] Chris Stolte, Diane Tang, and Pat Hanrahan. 2008. Polaris: A System for Query,
Analysis, and Visualization of Multidimensional Databases. Commun. ACM 51,
11 (nov 2008), 75–84. https://doi.org/10.1145/1400214.1400234

[26] Bryan Tan, Benjamin Mariano, Shuvendu K. Lahiri, Isil Dillig, and Yu Feng. 2022.
SolType: refinement types for arithmetic overflow in solidity. Proc. ACM Program.
Lang. 6, POPL (2022), 1–29. https://doi.org/10.1145/3498665

[27] Vega-Lite. 2019. Vega-Lite Examples. https://vega.github.io/vega-lite/examples/
[28] Chenglong Wang, Yu Feng, Rastislav Bodik, Alvin Cheung, and Isil Dillig. 2019.

Visualization by Example. Proc. ACM Program. Lang. 4, POPL, Article 49 (dec
2019), 28 pages. https://doi.org/10.1145/3371117

[29] Chenglong Wang, Yu Feng, Rastislav Bodik, Isil Dillig, Alvin Cheung, and Amy J
Ko. 2021. Falx: Synthesis-Powered Visualization Authoring. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan)
(CHI ’21). Association for Computing Machinery, New York, NY, USA, Article
106, 15 pages. https://doi.org/10.1145/3411764.3445249

[30] Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay, Bill
Howe, and Jeffrey Heer. 2016. Towards a General-Purpose Query Language for
Visualization Recommendation. In Proceedings of the Workshop on Human-In-
the-Loop Data Analytics (San Francisco, California) (HILDA ’16). Association for
Computing Machinery, New York, NY, USA, Article 4, 6 pages. https://doi.org/
10.1145/2939502.2939506

[31] Zhengkai Wu, Vu Le, Ashish Tiwari, Sumit Gulwani, Arjun Radhakrishna, Ivan
Radiček, Gustavo Soares, Xinyu Wang, Zhenwen Li, and Tao Xie. 2022. NL2Viz:
Natural Language to Visualization via Constrained Syntax-Guided Synthesis. In
Proceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Singapore, Singapore)
(ESEC/FSE 2022). Association for Computing Machinery, New York, NY, USA,
972–983. https://doi.org/10.1145/3540250.3549140

[32] Sai Zhang and Yuyin Sun. 2013. Automatically Synthesizing SQL Queries from
Input-Output Examples. In Proceedings of the 28th IEEE/ACM International Con-
ference on Automated Software Engineering (Silicon Valley, CA, USA) (ASE’13).
IEEE Press, 224–234. https://doi.org/10.1109/ASE.2013.6693082

[33] Tianyi Zhang, London Lowmanstone, Xinyu Wang, and Elena L. Glassman. 2020.
Interactive Program Synthesis by Augmented Examples. In Proceedings of the
33rd Annual ACM Symposium on User Interface Software and Technology (Virtual
Event, USA) (UIST ’20). Association for Computing Machinery, New York, NY,
USA, 627–648. https://doi.org/10.1145/3379337.3415900

[34] Xiangyu Zhou, Rastislav Bodik, Alvin Cheung, and Chenglong Wang. 2022.
Synthesizing Analytical SQL Queries from Computation Demonstration. In Pro-
ceedings of the 43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation (San Diego, CA, USA) (PLDI 2022). As-
sociation for Computing Machinery, New York, NY, USA, 168–182. https:
//doi.org/10.1145/3519939.3523712

1881

https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1145/3563307
https://doi.org/10.1145/3385412.3385988
https://proceedings.mlr.press/v70/devlin17a.html
https://doi.org/10.1145/3062341.3062351
https://doi.org/10.1145/3062341.3062351
https://doi.org/10.1145/2837614.2837629
https://doi.org/10.1145/113445.113468
https://doi.org/10.1145/2240236.2240260
https://doi.org/10.1145/2240236.2240260
https://doi.org/10.1145/3314221.3314602
https://doi.org/10.1145/1481848.1481853
https://doi.org/10.1109/TVCG.2007.70594
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1109/TVCG.2018.2865240
https://doi.org/10.1145/3331554.3342608
https://doi.org/10.1145/2737924.2738007
https://doi.org/10.1145/2737924.2738007
https://pandas.pydata.org/
https://doi.org/10.1145/345099.345100
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1109/TVCG.2016.2598839
https://doi.org/10.1109/TVCG.2016.2598839
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2015.2467153
https://doi.org/10.1145/1400214.1400234
https://doi.org/10.1145/3498665
https://vega.github.io/vega-lite/examples/
https://doi.org/10.1145/3371117
https://doi.org/10.1145/3411764.3445249
https://doi.org/10.1145/2939502.2939506
https://doi.org/10.1145/2939502.2939506
https://doi.org/10.1145/3540250.3549140
https://doi.org/10.1109/ASE.2013.6693082
https://doi.org/10.1145/3379337.3415900
https://doi.org/10.1145/3519939.3523712
https://doi.org/10.1145/3519939.3523712

