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Abstract

While data visualization plays a crucial role in gaining in-
sights from data, generating answers over complex visu-
alizations from natural language questions is far from an
easy task. Mainstream approaches reduce data visualization
queries to a semantic parsing problem, which either relies
on expensive-to-annotate supervised training data that pairs
natural language questions with logical forms, or weakly
supervised models that incorporate a larger corpus but fail
on long-tailed queries without explanations. This paper aims
to answer data visualization queries by automatically synthe-
sizing the corresponding program from natural language. At
the core of our technique is an abstract synthesis engine that
is bootstrapped by an off-the-shelf weakly supervised model
and an optimal synthesis algorithm guided by triangle align-
ment constraints, which represent consistency among natural
language, visualization, and the synthesized program.
Starting with a few tentative answers obtained from an

off-the-shelf statistical model, our approach first involves an
abstract synthesizer that generates a set of sketches that are
consistent with the answers. Then we design an instance of
optimal synthesis to complete one of the candidate sketches
by satisfying common type constraints and maximizing the
consistency among three parties, i.e., natural language, the
visualization, and the candidate program.

We implement the proposed idea in a system called Poe

that can answer visualization queries from natural language.
Our method is fully automated and does not require users
to know the underlying schema of the visualizations. We
evaluate Poe on 629 visualization queries and our experiment
shows that Poe outperforms state-of-the-arts by improving
the accuracy from 44% to 59%.
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1 Introduction

Due to the prevalence of non-trivial visualization tasks across
different application domains, recent years have seen a grow-
ing number of libraries that aim to automate complex visual-
ization tasks. Despite all these efforts, data visualization still
remains a daunting task that requires considerable expertise.
As many end-users typically lack the expertise to write

complex queries in declarative query languages such as SQL
or R programs, techniques that can answer visualization
queries from natural language (NL) descriptions are more
compelling. However, because natural language is inherently
ambiguous, mainstream NL-based techniques try to achieve
high precision by training the system on a specific semantic
parser [6] where the question is translated to a logical form
that can be executed against the visualization to retrieve the
correct denotation. Unfortunately, semantic parsers heavily
rely on supervised training data that pairs natural language
questions with logical forms, but such data is very expensive
to annotate. Although recent state-of-the-arts [20] slightly
mitigate this challenge through weak supervision without
explicitly annotating data with logical forms, their perfor-
mance is far from satisfactory [20, 22] due to the quality and
quantity of the training data required to infer the hidden
logical connections for deriving the answers.

In this paper, we provide an introspective program synthesis
technique and its implementation in a tool called Poe, for syn-
thesizing data visualization queries from natural language.
Our key insight is based on a synergistic integration of sta-
tistical model and logic-based reasoning shown in Figure. 1.
Specifically, Poe starts with answers from an off-the-shelf

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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Figure 1. Framework overview.

statistic model that is trained through weak supervision.
Since such a model only relies on pairs of question-answer
instead of explicit logical programs, it significantly reduces
the effort of labeling data thus achieves better performance
through a large corpus [20]. However, in the case of long-
tailed queries, the statistical model may still generate wrong
answers. This is where our key insight comes from: even
though the statistical model generates a wrong answer that
is derived from a sequence of hidden inference steps repre-
sented by neural network, part of the hidden steps may still
be sensible since they are learnt from a large corpus. But we
can not access the hidden inference steps from the neural net-
work since it is trained directly from question-answer pairs.
To get an interpretable explanation that deciphers the answer
of a statistical model, we leverage a synthesis procedure to
generate programs that are consistent with the specification,
which contains a visualization query and its answer. Because
the original answer may be wrong, the generated programs
may all be problematic. Here, each program can be viewed
as an explanation for the decision, which contains partial
correct derivations to the correct answer. After that, Poe fur-
ther turns this into an optimal synthesis problem whose goal
is to pick a candidate program and refine it into a concrete
program that is likely to be correct.

There are two caveats we need to conquer in this project.
First, for each candidate answer proposed by the statistic
model, there could be multiple programs that are consistent
with the specification and generating each program is slow
since it has to solve a non-trivial synthesis problem. Second,
evenwith a set of programs as the explanations of the answer,
we still need to define an objective function that guides the
optimal synthesis to obtain the desired solution.
To address the first caveat, we design an abstract syn-

thesizer whose job is to generate the most general partial
programs that are consistent with the specification. Here,
we prefer partial programs that are most general because 1)
they are faster to find, and 2) they offer a compact represen-
tation of the explanation (i.e., search space). To mitigate the
second caveat, we leverage a multi-modal optimal synthesis
procedure whose objective function is to encode fine-grained
semantic constraints that are difficult to learn by off-the-shelf
statistical models. In particular, Poe encodes 1) a novel tri-
angle alignment constraint that denote semantic consistency

among three parties, namely, natural language, visualiza-
tions, and candidate programs; 2) well-typed constraints that
are enforced by the semantics of the DSL.

To evaluate the effectiveness of our technique, we evaluate
Poe on 629 visualization benchmarks and compare it against
VisQA [22], the state-of-the-art synthesizer for visualization
queries. Our experiment shows that Poe outperforms VisQA
by improving the accuracy from 44% to 59%. Our ablation
study clearly demonstrates the benefits of our abstract syn-
thesizer and optimal synthesis using triangle alignments.

To summarize, this paper makes the following key contri-
butions:

• We identify and present a new type of program syn-
thesis problem in visualization question answering,
where a deep learning model’s (potentially noisy) out-
put is used as specification to synthesize programs
that explain the model’s behavior, which is dubbed as
introspective program synthesis.
• We describe an abstract program synthesis technique
for quickly inducing the search space given noisy spec-
ifications from a deep learning model’s output.
• We describe an optimal program synthesis technique
for finding programs that best match the consistency
constraints implied between natural language ques-
tions and visualizations.
• We implement our approach in an end-to-end system
called Poe and evaluate it on 629 visualization question
answering tasks of different types. In particular, we
show that our approach improves the state-of-the-art
performance from 44% to 59%.

2 Overview

In this section, we give an overview of our approach with
the aid of a simple motivating example.

2.1 A Motivating Example

Figure. 2 (left) shows a stacked bar chart that represents the
opinions for future economic growth for different countries.
Here, Alice describes her query in natural language:

łWhich country’s economy will get most worse
over next 12 months?ž

By reading the visualization on the length of the red bar for
every country, human beings can locate the correct answer:
łGreecež, because it has the longest bar that represents the
opinion of łWorsenž, which corresponds to the keyword
łmost worsež from the query.

To automate data visualization tasks, weakly-supervised
approaches [20] employ neural programming that mimics
the above procedure by directly estimating the probability of
each potential answer extracted from the visualization. For
example, a typical output ranking (by probability) from such
models would look like:

(0.78, Brazil), (0.67, Japan), (0.55, Greece), ...
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%

...

Data

Query

Which country's economy will get most worse 

over next 12 months?

Explanation#2

T0 = pivot(T, "opinion", "%")

T1 = select(T0, "Worsen", eqmax, null)

T2 = project(T1, ["Country"])

Explanation#1

T0 = pivot(T, "opinion", "%")

T1 = select(T0, "Improve", eqmax, null)

T2 = project(T1, ["Country"])

Visualization

Figure 2. A motivating example on data of opinions for future economic growth for different countries. Left: A visualization
of stacked bar chart for illustrating the data distribution; Middle: The corresponding table format of the data; Right: Example
checking semantic consistency between three parties: data, query and explanation. Explanation#1 doesn’t fit since no keyword
in the query shares similar meaning with Improve in the data and Improve in the explanation; Explanation#2 satisfies semantic
consistency.

where each tuple is composed by a candidate answer and
its corresponding probability estimation. Compared to ap-
proaches based on semantic parsing that require additional
labeling of intermediate logical forms, weakly-supervised
approaches save the efforts of manual labeling by skipping
the logical forms and moving directly from query to answer,
thus benefiting from a larger source of available training data.
However, it becomes non-trivial to track and fix problematic
answers proposed by these models, since weakly-supervised
approaches do not utilize intermediate logical forms that
give hints about the implicit reasoning process. For example,
according to the above output ranking, the correct solution
łGreecež has a lower probability than łBrazilž. However, be-
cause the model does not generate logical forms to explain
the answers, it is difficult to figure out which one is the
correct answer.
To address this, Poe employs a two-staged program syn-

thesis procedure to refine the candidate answers immedi-
ately proposed from weakly-supervised models. First, for
candidate answers, Poe generates potential explanations (i.e.,
abstract programs) using an abstract program synthesis al-
gorithm. Then, Poe tries to refine the explanations based
on information from the data and user-provided query by
optimal synthesis techniques. Finally, Poe proposes the most
promising candidate answer based on the newly refined
ranking.

⟨Table⟩ ::= project( ⟨Table⟩, ⟨ColList⟩ )

| select( ⟨Table⟩, ⟨BoolOp⟩, ⟨ColInt⟩, ⟨ConstVal⟩ )

| pivot( ⟨Table⟩, ⟨ColInt⟩, ⟨ColInt⟩ )

| aggregate( ⟨Table⟩, ⟨ColList⟩, ⟨AggrOp⟩, ⟨ColInt⟩ )

⟨AggrOp⟩ ::= count | min | max | sum | mean

⟨BoolOp⟩ ::= <| <= | == | >= | >| != | eqmax | eqmin

⟨𝑇𝑎𝑏𝑙𝑒⟩ ∈ tables, ⟨𝐶𝑜𝑛𝑠𝑡𝑉𝑎𝑙⟩ ∈ constants

⟨𝐶𝑜𝑙𝐼𝑛𝑡⟩ ∈ columns, ⟨𝐶𝑜𝑙𝐿𝑖𝑠𝑡⟩ ∈ columns𝑛

Figure 3. Syntax of a toy DSL for data wrangling.

2.2 Explanation Generation

To reason about the visualization, without loss of information
from data, Poe applies a visualization-to-table conversion
procedure similar to previous work [22] to obtain a compact
representation, as shown in Figure. 2 (middle). To explain the
candidate answers using program synthesis, we first intro-
duce a simple domain-specific language (DSL) for common
datawrangling tasks. As shown in Figure. 3, the DSL supports
a subset of relational algebra such as projection (project)
and selection (select) with aggregation (aggregate), as well
as pivoting (pivot) from typical data wrangling tasks.

The abstract synthesis engine of Poe can explain the can-
didate answers by looking for DSL programs that generate
the corresponding answers. In particular, for a given table
𝑇 (converted from its visualization) and the proposed top-𝑘
candidate answers 𝐴0, 𝐴1, ..., 𝐴𝑘 , Poe treats them as multiple
programming-by-example (PBE) problems where the input
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example is 𝑇 and the output example is 𝐴𝑖 , one for each
candidate answer as shown below:

(𝑇,𝐴0), (𝑇,𝐴1), (𝑇,𝐴2), ...

where𝐴0 =łBrazilž,𝐴1 =łCzech Rep.ž,𝐴2 =łGreecež, etc., and
synthesizes their corresponding DSL programs. For example,
for 𝐴0 =łBrazilž, there can be multiple explanations:

1 project(select(T, "%", ==, 84), ["Country"])

2 project(select(pivot(

T, "opinion", "%"), "Improve", eqmax, null), ["Country"])

3 ...

and for 𝐴2 =łGreecež the explanations would look like:

1 project(select(pivot(

T, "opinion", "%"), "Worsen", eqmax, null), ["Country"])

2 ...

Instead of directly synthesizing the above concrete programs,
which may not be scalable in practice, Poe synthesizes ab-
stract programs that are consistent with their corresponding
IO examples. So the explanations for 𝐴0 =łBrazilž would
look like:

1 project(select(T, ⋄, ⋄, ⋄), ⋄)

2 project(select(pivot(T, ⋄, ⋄), ⋄, ⋄, ⋄), ⋄)

3 ...

and similar to 𝐴2 =łGreecež :

1 project(select(pivot(T, ⋄, ⋄), ⋄, ⋄, ⋄), ⋄)

2 ...

where ⋄ denotes a hole in the program yet to be determined.
Such an abstract program can be further refined to concrete
programs by filling up the holes. Thus, each of them repre-
sents a broader search space of concrete programs.

Strategically, since the program

project(select(pivot(T, ⋄, ⋄), ⋄, ⋄, ⋄), ⋄)

satisfies at least 2 of the examples, i.e., (𝑇,𝐴0) (where𝐴0 =łBrazilž
which corresponds to the country with the highest łImprovež
opinion) and (𝑇,𝐴2) (where𝐴2 =łGreecež which corresponds
to the country with highest łWorsenž opinion), it’s included
as one of the potential abstract programs. Besides, Poe seeks
to expand the bag of such abstract programs. For example,
the following program

project(select(T, ⋄, ⋄, ⋄), ⋄)

also satisfies multiple examples (e.g., (𝑇,𝐴0) and (𝑇,𝐴1) so
it’s also included.

As a result, Poe’s abstract synthesis procedure constructs
a bag of abstract programs that satisfy the top-𝑘 examples:

1 project(select(pivot(T, ⋄, ⋄), ⋄, ⋄, ⋄), ⋄)

2 project(select(T, ⋄, ⋄, ⋄), ⋄)

3 ...

and provides it to the optimal synthesis for further refine-
ment.

2.3 Answer Refinement

Given the list of program sketches above, Poe’s optimal
synthesis engine fills in the holes by combination of type-
directed synthesis and multi-modal information from the
original data and query. In particular, Poe infers constraints
from the original data and query and encode them as objec-
tives that guide the optimal synthesis procedure.

Note that the query from the user has two keywords high-
lighted automatically1, i.e., łcountryž and łmost worsež. Poe
composes constraints from different guiding principles in
practice. For example, semantic consistency should be main-
tained among three parties, namely data, query and expla-
nation, which we denote by triangle alignment. In particular
for the keyword łcountryž in the query, triangle alignment
produces constraints that ensure the existence of table con-
tents that have similar meanings with łcountryž, as well as
existence of similar DSL constructs in the explanation pro-
grams.
Figure. 2 (right) depicts the meaning of semantic consis-

tency via triangle alignment. For a concrete program refined
from the bag of abstract programs such as:

project(select(pivot(

T, "opinion", "%"), "Improve", eqmax, null), ["Country"])

we can find Country as an argument provided to project and
łCountryž as a column name in the original table. However,
the semantic consistency for łmost worsež is broken since
we cannot find any language construct in the program that
is similar to it, even though łWorsenž as an opinion in the
original table builds up the similarity connection between
the data and the query. If we switch the language construct
that causes the inconsistency from łImprovež to łWorsenž,
the resulting program:

project(select(pivot(

T, "opinion", "%"), "Worsen", eqmax, null), ["Country"])

now satisfies the semantic consistency, where Worsen from
the program now connects with łWorsenž in the query and
Worsen in the data. Actually, this turns out to be the exact
program that best executes the user intent and generates the
desired answer łGreecež.

Besides triangle alignment, Poe also encodes other guiding
principles as soft constraints into an optimal synthesis prob-
lem and generates a ranking list of preferences of concrete
programs in accordance to how well they fit into different
constraints. Eventually, Poe executes the top-ranked pro-
gram and returns the refined answer.

3 Preliminaries and Problem Statement

In this section, we first provide some background that will be
used throughout the paper. After that, we describe the archi-
tecture of our introspective synthesis algorithm and explain

1Keyword discovery can be approached by a template-based method or by

data-driven methods (e.g., TFIDF weighting).
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each of its components in detail. However, because both the
abstract synthesis and optimal refinement are the main con-
tributions of this paper, we defer a detailed discussion to
Section. 4 and Section. 5, respectively.

3.1 Preliminaries

DSL. We assume a domain-specific language 𝐿 specified
as a context-free grammar 𝐿 = (𝑉 , Σ, 𝑅, 𝑆), where 𝑉 , Σ de-
note non-terminals and terminals respectively, 𝑅 is a set of
productions, and 𝑆 is the start symbol.

Partial Program. A partial program (or abstract program)

𝑃 is a sequence 𝑃 ∈ (Σ ∪ 𝑉 )∗ such that 𝑆
∗
⇒ 𝑃 (i.e., 𝑃 can

be derived from 𝑆 via a sequence of productions). We refer
to any non-terminal in 𝑃 as a hole ⋄, and we say that 𝑃 is
complete if it does not contain any holes.

Given a partial program 𝑃 containing a hole ⋄, we can fill
this hole by replacing ⋄with the right-hand-side of any gram-
mar production 𝑟 of the form ⋄ → 𝑒 . We use the notation

𝑃
𝑟
⇒ 𝑃 ′ to indicate that 𝑃 ′ is the partial program 2 obtained

by replacing the first occurrence of ⋄ with the right-hand-

side of 𝑟 , and we write Fill(𝑃, 𝑟 ) = 𝑃 ′ whenever 𝑃
𝑟
⇒ 𝑃 ′.

Example 1. Consider the following partial program 𝑃 :

project(⋄, ⋄)

and production 𝑟 ≡ ⋄ → select(⋄,⋄,⋄,⋄). In this case,
Fill(𝑃, 𝑟 ) yields the following partial program 𝑃 ′:

project(select(⋄, ⋄, ⋄, ⋄), ⋄)

Deduction Engine. Motivated by prior work [11, 15, 16]
in deductive synthesis, we assume access to a deduction en-
gine that can determine whether a partial program 𝑃 is feasi-
blewith respect to specification 𝜙 . To make this more precise,
we introduce the following notion of feasibility.

Definition 1 (Feasible Partial Program). Given a specifica-
tion 𝜙 and language 𝐿 = (𝑉 , Σ, 𝑅, 𝑆), a partial program 𝑃

is said to be feasible with respect to 𝜙 if there exists any

complete program 𝑃 ′ such that 𝑃
∗
⇒ 𝑃 ′ and 𝑃 ′ |= 𝜙 .

In other words, a feasible partial program can be refined
into a complete program that satisfies the specification. We
assume that our deduction engine over-approximates feasi-
bility through abstract semantics. That is, if 𝑃 is feasible with
respect to specification 𝜙 , then the feasibility check should
report that 𝑃 is feasible but not necessarily vice versa. Note
that almost all deduction techniques used in the program
synthesis literature satisfy this assumption [15ś17, 23, 43].

Example 2. Consider the following input-output example
in list manipulation:

𝑒𝑖𝑛 : [74, 39, 40, 53, 89, 10] ↦→ 𝑒𝑜𝑢𝑡 : [78, 80, 106]

2We also call 𝑃 ′ as the refinement of 𝑃 .

Weuse the length of the list as the abstract domain [15]. Thus,
the partial program 𝑃 : reverse(map(𝑒𝑖𝑛, ⋄)) is infeasible (i.e.,
𝑃 ̸ |= 𝑒). In other words, the program won’t satisfy the given
IO example, no matter how we fill hole ⋄, because:

• The map construct takes as input a function (yet to
be determined by the synthesizer) and applies it over
every element of 𝑒𝑖𝑛 , which yields an output list with
equal length to that of the input list 𝑒𝑖𝑛 .
• The reverse construct reverses the order of elements
of its input, which makes no changes to its length; thus,
the output list has the same length with the input list.
• Since the output returned by reverse does not have the
same length as the desired output 𝑒𝑜𝑢𝑡 , we derive an in-
consistency, i.e., 𝑠𝑖𝑧𝑒 (𝑒𝑖𝑛) == 𝑠𝑖𝑧𝑒 (𝑒𝑜𝑢𝑡 ) ∧𝑠𝑖𝑧𝑒 (𝑒𝑖𝑛) ==

6 ∧ 𝑠𝑖𝑧𝑒 (𝑒𝑜𝑢𝑡 ) == 3 is UNSAT.

Statistical Model. We consider a weakly supervised sta-
tistical model 𝜋 [20] used to prioritize the search order. Given
a visualization 𝐼 and its query 𝑄 , the model directly assigns
probabilities 𝜋 (𝐴|𝐼 ,𝑄) to every candidate answer 𝐴 ∈ A.

Rendering Visualization as Table. For simplicity of the
presentation, we will represent a visualization by its equiva-
lent table format, which can be manipulated by existing DSLs
for data wrangling or relational algebra. In particular, given
a visualization 𝐼 , we leverage an off-the-shelf procedure [22]
to convert 𝐼 into its tabular format. Please refer to Section. 6
for more details.

3.2 Introspective Program Synthesis

In this section, we state the problem of introspective program
synthesis, as well as an overview of our proposed approach.
At a higher level, our approach aims at boosting the per-
formance of deep learning models in visualization question
answering by explaining their predictions using programs
and performing consistency refinements over the explana-
tions, where we use explanations, partial programs, or ab-
stract programs interchangeably. Becausemainstreamweakly
supervised models that directly predict answers rather than
generating intermediate logical forms, it is non-trivial for
human beings to understand how the decisions are made and
provide potential improvements. Our approach automates
such a task by synthesizing and refining the answers using
program synthesis. This makes our problem different from a
typical PBE setting, where our specification is noisy in that
1) not all the predictions are correct, and 2) predictions may
conflict with each other.

Example 3. Figure. 4 (right) shows a visualization query,
where the user asks:

łWhich country has highest Improve value?ž

which expects the ground truth reasoning process to be
similar to:

project(aggregate(I, null, max, ⋄), ["Country"])
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Figure 4. Example tables showing how one can derive simi-
lar programs to get conflicting outputs.

where different hole fillings for ⋄will result in different an-
swers, namely łBrazilž (when ⋄=łImprovež) or łJapanž (when
⋄=łWorsenž or ⋄=łRemain the samež).

Introspective Program Synthesis. Given 1) a visualiza-
tion question answering task T = (𝐼 ,𝑄) where 𝐼 is the visual-
ization and𝑄 is the question in English, 2) a domain-specific
language 𝐿 = (𝑉 , Σ, 𝑅, 𝑆), and 3) a weakly supervised deep
learning model 𝜋 that predicts top-𝑘 answers A = 𝜋 (𝐼 ,𝑄),
the goal of introspective program synthesis is to find a complete

program 𝑃 such that 𝑆
∗
⇒ 𝑃 and 𝑃 optimizes the following

objectives O:

𝑃∗ = argmax
𝑃

𝐽T,𝜋 (𝑃)

= argmax
𝑃

∑

𝑜∈O

𝜃𝑜 · 𝑜 (𝐼 ,𝑄,A, 𝑃),

where 𝑃∗ is the optimal program, 𝐽 is a cumulative term of
weighted objectives 𝑜 ∈ O.

In particular, we leverage objectives O to solve a multi-
model synthesis problem where O encodes 1) consistency
properties among three parties, namely, the visualization,
the question, and the program, and 2) naturalness of the
program.

Key Insight. Given a weakly-supervised deep learning
model 𝜋 trained from a large corpus, Poe starts from the top-
𝑘 answers of 𝜋 . Our observation on many deep learning mod-
els indicates that, even though the model’s top predictions
may look different and sometimes may not even contain the
correct answer, they share inherent semantics through im-
plicit reasoning processes, which establish certain confidence
drew from the training data. Therefore, our key insight is
to unravel the implicit reasoning process by decompiling
the answers of 𝜋 while resisting fine-grained details that are
error-prone due the limitation of noisy data.

Example 4. As shown in Figure. 4, given an question:

łWhich country has highest Improve value?ž

according to the above key insight, the following ordered
predictions will be proposed by an off-the-shelf deep learning
model [20]:

łBrazilž, łJapanž, łChinaž, łU.S.ž, ...

since the first three answers can be explained by the follow-
ing partial program:

project(aggregate(I, null, ⋄, ⋄), ["Country"])

while the answer of łU.S.ž can not be obtained because none
of its values of the three opinions aligns with the maximum
or minimum value which the program is able find. Thus,
łBrazilž, łJapanž and łChinaž share some inherent similarity
from the perspective of how they are reasoned, even though
they look unrelated on the surface.

System Overview. Figure. 5 shows the system workflow
of Poe. Specifically, given a DSL L, a visualization 𝐼 , and a
question 𝑄 , Poe first collects the top-𝑘 answers by querying
the deep learning model 𝜋 with the visualization task. Due to
the noisiness of the answers, they will be sent to the abstract
synthesis module to interpret the implicit reasoning process
behind the answers.

Abstract Synthesis. Given the top-𝑘 noisy answers from
the deep learning model as well as a DSL L for generating
visualization query programs, the abstract synthesis module
performs a relaxed version of deduction over the noisy an-
swers to quickly converge to a roughly feasible search space,
which is represented by a set of partial/abstract programs
P. We defer a detailed discussion of abstract synthesis to
Section. 4.

Optimal Refinement. Since each abstract program 𝑃 ∈

P can not be concretely executed to obtain the answer, Poe
further invokes the optimal refinement procedure to generate
a concrete program. In particular, the optimal refinement
module is an instance of optimal synthesis whose goal is to
optimize several objectives ranging over consistency among
multiple parties as well as perplexity of the programs. Finally,
the module will interpret the optimized program and return
the final answer. We defer a detailed discussion of optimal
refinement to Section. 5.

4 Abstract Program Synthesis with Noisy
Specification

In this section, we describe a novel abstract synthesis algo-
rithm that can efficiently quantify the relevant search space
given noisy specification from the deep learning model.

Intuition. Due to the uncertainty of an off-the-shelf deep
learning model, it may produce noisy answers that fail to
capture the user intent. Therefore, before we generate the
precise answer, we first need to efficiently quantify relevant
search space that explains the outputs from the statistical
model. However, this is quite challenging. As shown in Fig-
ure 6, given a set of input-output examples 𝐸, a naive way
(at the left) is to generate a coarse-grained abstract program
⋄ that is consistent with all input-output examples. However,
this option is useless because the search space also includes
a huge amount of undesired programs. On the other extreme
at the right, we can also perform fine-grained synthesis by
synthesizing a concrete program 𝑃 per each input-output
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Figure 5. System workflow in Poe.
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Figure 6. Different granularities that affect the algorithm
search space. An input-output pair is denoted by a triangle.

example 𝑒 ∈ 𝐸. However, the fine-grained option has at least
two drawbacks: first, it requires invoking multiple instances
of PBE (programming-by-example) tasks, which may not
be feasible for the end user. Second, such a fine-grained op-
tion may also lead to overfitting, especially if none of the
input-output examples matches the user intent.

Our Solution. Our goal is to compute a set of abstract
programs that achieve a good balance between generality
and specificness (Themiddle one in Figure. 6). In other words,
our abstract programs should be relatively specific to pro-
vide sufficient information to derive the correct solution.
In the meantime, they should also achieve certain degree
of generality with information that go beyond the current
input-output examples.

We first introduce an auxiliary function that will be used
by the abstract synthesis algorithm.

Definition 2 (Relaxed Feasibility). Given a partial program
𝑃 as well as a set of IO examples 𝐸, we use the CountCon-
sist function to count the number of examples in 𝐸 that is
consistent with program 𝑃 :

CountConsist(𝑃, 𝐸) =
∑

∀𝑒∈𝐸

1(𝑃 |= 𝑒)

where 1 is the boolean predicate function3.

3A boolean predicate function 1(𝐴) is defined as 1(𝐴) =

{

1 if 𝐴

0 if ¬𝐴
.

Example 5. Consider the table shown in Figure. 4 (right)
as input, and the following partial program 𝑃 :

project(aggregate(I, null, ⋄, ⋄), ["Country"])

For the given set of model predictions as outputs:

łBrazilž, łJapanž, łChinaž, łU.S.ž

Invoking CountConsist(𝑃, 𝐸) will return 3. Because only
łU.S.ž cannot be generated by any derivations of the partial
program, which makes 𝑃 consistent with three out of the
four input-output examples.

Abstract Program Synthesis. Algorithm 1 shows the
high-level structure of our synthesis algorithm, which takes
as input a specification 𝐸 that must be satisfied by the syn-
thesized program, a domain-specific language with syntax
L, as well as a hyperparameter 𝑞 that balances the generality
and specificness, which we denote as a balance coefficient.
The output of the AbsSynth procedure is either a set of
partial/abstract programs P in the DSL or ⊥, meaning that
there is no DSL program that satisfies 𝐸.
Internally, our synthesis algorithm maintains a worklist

data structuresW. The worklistW is a set of abstract pro-
grams that will eventually be returned by the procedure. In
particular, the AbsSynth procedure initializesW with a
single root node labeled with the start symbol 𝑆 (line 2); thus,
W initially contains an abstract program 𝑃 that represents
any syntactically legal DSL program.

In each iteration of the while loop (lines 3ś16), we pick an
abstract program 𝑃 fromW (line 5) and iteratively compute
all possible refinements 𝑃 ′ using the production rules defined
by L (line 6). For each candidate refinement 𝑃∗, we invoke
the CountConsist procedure to compute the number of
examples 𝑁 in 𝐸 that is consistent with 𝑃∗ (line 7). if 𝑛 is
greater than the threshold 𝑞, it means 𝑃∗ is still too abstract
thus requires further refinement. In this case, we add 𝑃∗ to
theworklistW (line 9) so that the program gets refined again
in the near future. In the second case where 𝑛 is no greater
than 𝑞 (line 10), it indicates that 𝑃∗ is too specific and may
lead to overfitting. In this case, we include 𝑃 , which is the
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abstract program fromwhich 𝑃∗ is refined, to the worklistW
(line 11). Finally, the algorithm terminates when the worklist
W reaches a fixed-point (line 14). In other words, for all
programs 𝑃 ∈ W, any refinement on 𝑃 will lead to programs
that are too specific (i.e., CountConsist(𝑃 ′, 𝐸) ≤ 𝑞).

Algorithm 1 Abstract Synthesis with Noisy Specification

Input: DSL L, IO Examples 𝐸, Balance Coefficient 𝑞

Output: Set of Partial Programs P or ⊥

1: procedure AbsSynth(L, 𝐸, 𝑞)

2: W ← {Root(𝑆)}

3: while true do

4: W ′ ←W

5: W ←W − {𝑃}

6: for 𝑃∗ ∈ {𝑃 ′ | ∀𝑑 ∈ L, 𝑃
𝑑
→ 𝑃 ′} do

7: 𝑛 ← CountConsist(𝑃∗, 𝐸)

8: if 𝑛 > 𝑞 then

9: W ←W ∪ {𝑃∗}

10: else if 𝑛 ≤ 𝑞 then

11: W ←W ∪ {𝑃}

12: end if

13: end for

14: ifW =W ′ then returnW

15: end if

16: end while

17: end procedure

Example 6. Following Example. 5, for the same given IO
examples, Algorithm. 1 iteratively finds out a set of feasible
partial programs given the threshold 𝑞 = 3. We go over the
algorithm with a few concrete iterations:

1. The algorithm starts from a start symbol of holeW =

{⋄} and 𝑃 = ⋄, which is feasible for all examples.
2. The algorithm derives 𝑃 with well-typed production

rules (line 6). For example, one of the 𝑃∗ could be:

project(⋄)

which is also feasible for all the IO examples (line 7),
i.e., 𝑛 = 4. In this case, since 𝑛 > 𝑞, the above program
is added to the worklist (line 8-9).

3. The derivation continues until 𝑃 becomes:

project(aggregate(I, null, ⋄0, ⋄1), ["Country"])

From the previous example we know currently 𝑃 sat-
isfies only three of the IO examples, i.e., 𝑛 = 3, but not
sure whether it can be further refined, so we add 𝑃 to
the worklist and continue with the iteration.

4. The algorithm attempts to fill⋄0 with max, which yields:

project(aggregate(I, null, max, ⋄1), ["Country"])

and finds out it’s only feasible for IO with outputs of
łBrazilž and łJapanž, i.e., 𝑛 = 2. In this case since 𝑛 ≤ 𝑞,
the previous 𝑃 (before derivation) is added.

5. The procedure continues until the worklistW reaches
a fixed point. (line 14).

5 Explanation Refinement via Optimal
Program Synthesis

In this section, we describe our algorithm for synthesizing
the optimal explanations that best match the consistency
constraints implied between natural language questions and
visualizations. We first define a relational operator to formal-
ize the optimal synthesis problem:

Near-Synonym Linguistic Engine. First, we assume ac-
cess to a linguistic engine that can specifically determine
whether two linguistic units are near-synonyms [13], which
constitutes to one of the major constraints of triangle
alignment. A call to the near-synonym linguistic engine
NSyn(𝑟, 𝑠) ∈ [0, 1] returns the degree of two linguistic units
𝑟 and 𝑠 sharing common senses, where 1 indicates identical
and 0 indicates irrelevant. In other words, a near-synonym
linguistic engine tells the łsimilarityž4 between linguistic
units, e.g., words, phrases, etc..

Example 7. Consider the followingwords: łhighž, łhighestž,
łlowž, we have:

NSyn(łhighž, łhighestž) > NSyn(łhighž, łlowž)

which means łhighł is more similar to łhighestž than łlowž.

ILP Formulation. A 0-1 Integer Linear Programming
(ILP) consists of a set of linear constraints C over boolean
variables and an objective function 𝑐 . The goal is to find an
assignment such that all constraints are satisfied and the
value of the objective function 𝑐 is optimized.

Definition 3 (0-1 Integer Linear Programming). The 0-1
ILP problem is defined as follows:

𝑚𝑖𝑛 𝑐 :
∑

𝑗

𝑐 𝑗𝑥 𝑗

𝑠 .𝑡 . C :
∧

𝑖

∑

𝑗

𝑎𝑖, 𝑗𝑥 𝑗 Δ 𝑏𝑖 ,

with Δ := {≤,=, ≥}, 𝑥 𝑗 ∈ {0, 1}, and coefficients
𝑐 𝑗 , 𝑎𝑖, 𝑗 , and 𝑏𝑖 are all integers.

We formulate the problem of finding an optimal triangle
alignment using 0-1 ILP. Specifically, constraints C encode
mappingsM among entities from three parties: the question
𝑄 , the program 𝑃 , and the visualization 𝐼 . The objective
function expresses that we want to minimize the cost of
the mappings. In what follows, we describe our encoding in
more detail.
Domains. The domains contains entities from three par-

ties. In particular, each question𝑄 contains a set of linguistic
units 𝑤 ∈ 𝑉𝑤 , each visualization consists of a set of cells
𝑡 ∈ 𝑉𝑡 , and each 𝑃 has a set of holes ℎ ∈ 𝑉ℎ that need to
be filled. Finally, we also have a set of abstract programs

4Note that similarity techniqes based on distributional hypothesis [19], e.g.,

word2vec [25] and glove [28], are observably not suitable for distinguishing

synonyms and antonyms.
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𝑃 ∈ 𝑉𝑃 generated by Algorithm 1. Formally, the triangle
alignments among entities from three parties are encoded as
the conjunctions of the following boolean variables:
Variables. The variables in our 0-1 ILP formulation cor-

respond to all possible mappings among three parties:

• 𝑥𝑡𝑤 : the boolean variable indicates a one-to-one map-
ping from a linguistic unit𝑤 from the question 𝑄 to a
cell value 𝑡 from the data source (i.e., visualization).
• 𝑦𝑡

ℎ
: the boolean variable indicates a one-to-one map-

ping from a hole ℎ of an abstract program to a terminal
of cell value 𝑡 . I.e., the hole ℎ is filled with terminal 𝑡 .
• 𝑧ℎ

𝑃
: the boolean variable indicates a mapping from an

abstract program 𝑃 to a hole ℎ. In other words, 𝑧ℎ
𝑃

evaluates to 1 if hole ℎ belongs to abstract program 𝑃 .
• 𝑢𝑃 : The boolean variable indicates the abstract pro-
gram 𝑃 (chosen from Algorithm 1.) is used to derive
the final solution.

Example 8. The optimal mapping for Explanation#2 from
Figure. 2 given the following program 𝑃 :

project(select(pivot(T, ⋄0, ⋄1), ⋄2, ⋄3, ⋄4), ⋄5)

can be represented by the following variables:

• 𝑥
Country
country = 𝑡𝑟𝑢𝑒 , 𝑥Worsen

most worse = 𝑡𝑟𝑢𝑒

• 𝑦
Country
⋄5

= 𝑡𝑟𝑢𝑒 , 𝑦Worsen
⋄2

= 𝑡𝑟𝑢𝑒

• ∀𝑖 ∈ {0, 1, 2, 3, 4, 5}, 𝑧⋄𝑖
𝑃

= 𝑡𝑟𝑢𝑒

• 𝑢𝑃 = 𝑡𝑟𝑢𝑒

Observe that the number of variables used in the encoding
grows quadratically for the number of words in the question
𝑄 as well as the number of holes in the abstract program.
However, since the number of words and holes is usually
small, our encoding introduces a manageable number of
variables in practice.

Constraints. While the variables describe all possible
mappings among entities from different parties, not all map-
pings can occur simultaneously. For example, we must en-
force that any satisfying assignment to C corresponds to a
mapping from entities in visualization 𝑣 to holes in 𝑃 . Fur-
thermore, types also impose hard constraints that limit which
variables in 𝑉 can be mapped to which ones in 𝐻 . We en-
force these hard constraints by generating a system of linear
constraints C as follows:

1. Well-typed terminals. If two parameters ℎ ∈ 𝐻 and
𝑡 ∈ 𝑇 are not compatible due to their types, the boolean
variables where these parameters occur are always set
to 0.

𝑦𝑡ℎ = 0 if the types of t and h are incompatible.

2. For each hole ℎ ∈ 𝐻 , we impose that there is exactly
one terminal 𝑡 that maps to ℎ:

∀ℎ ∈ 𝑉ℎ,
∑

∀𝑡 ∈𝑉𝑡

𝑦𝑡ℎ = 1

Effectively, these constraints enforce that any solution
of C corresponds to a surjective mapping.

3. In a similar way, we also impose that there is exactly
one abstract program 𝑃 that will be chosen:

∑

∀𝑃 ∈𝑉𝑃

𝑢𝑃 = 1

Furthermore, each hole ℎ can belong to exactly one
abstract program 𝑝:

∀ℎ ∈ 𝑉ℎ,
∑

∀𝑃 ∈𝑉𝑃

𝑧ℎ𝑃 = 1

4. For each entity 𝑡 ∈ 𝑉𝑡 , we impose that there is at most
one mapping in the question 𝑄 that contains 𝑡 :

∀𝑡 ∈ 𝑉𝑡 ,
∑

𝑤∈𝑉𝑤

𝑥𝑡𝑤 ≤ 1

5. Finally, we ensure that a mapping only gets activated
if its corresponding abstract program 𝑃 is chosen:

∀ℎ ∈ 𝑉ℎ,∀𝑡 ∈ 𝑉𝑡 , −𝑦
ℎ
𝑡 + 𝑢

𝑃 + 𝑧ℎ𝑃 ≥ 1

Example 9. Following Figure. 2 and Example. 8, we can
construct the corresponding constraint system by defining
the set of holes 𝑉ℎ and set of cell values 𝑉𝑡 , which are given
by:

𝑉ℎ = {⋄𝑖 |𝑖 = 0, 1, ...},𝑉𝑡 = {𝐶𝑜𝑢𝑛𝑡𝑟𝑦, 𝑜𝑝𝑖𝑛𝑖𝑜𝑛, ...}.

Objective Function. We borrow the notion of perplexity
from information theory to measure how common a can-
didate abstract program is observed. Given a program 𝑃 ,
assuming we have function PPL(𝑃) that computes the per-
plexity of 𝑃 using an off-the-shelf statistical model, then the
goal of the objective function 𝑐 in our ILP formulation is
to find an optimal alignment with the lowest cost and per-
plexity. Specifically, we define the objective function 𝑐 as
follows:

∑

𝑤∈𝑉𝑤

∑

𝑡 ∈𝑉𝑡

(1 − NSyn(𝑤, 𝑡)) · 𝑥𝑡𝑤 +
∑

𝑝∈𝑉𝑃

PPL(𝑃) · 𝑢𝑃

Each mapping has an associated cost using linguistic dis-
tances defined at the beginning, and the perplexity score
will bias the objective function to prefer more promising
candidates.

Example 10. Following Example. 9, suppose eventually we
want to find out the optimal explanation from the following
two programs (denoted by 𝑃1 and 𝑃2):

1 project(select(pivot(

T, "opinion", "%"), "Worsen", eqmax, null), ["Country"])

2 project(select(pivot(

T, "opinion", "%"), "Improve", eqmax, null), ["Country"])
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Note that the linguistic engine has the following returned
scores:

NSyn(Country, country) = 1,

NSyn(Worsen,most worse) = 0.6,

with other scores not mentioned omitted (since they are
mostly shared between the two programs and won’t affect
the final result), and the computed perplexity of both pro-
grams are PPL(𝑃1) = 3.93 and PPL(𝑃2) = 3.99. Both costs
can be computed by:

𝑐𝑜𝑠𝑡 (𝑃1) = (1 − 1) · 1 + (1 − 0.6) · 1 + 3.93 = 4.33,

𝑐𝑜𝑠𝑡 (𝑃2) = (1 − 1) · 1 + (1 − 0) · 1 + 3.94 = 4.94.

Obviously 𝑃1 has lower cost and the optimal synthesis will
propose it as the optimal candidate explanation.

6 Implementation

We have implemented the proposed framework in a tool
called Poe, which consists of approximately 6,000 lines of
Python code. Poe is built on top of the Trinity [24] frame-
work. In particular, our component specifications are ex-
pressed (Section. 3) in quantifier-free Presburger arithmetic.
More specifically, we use a similar DSL for the data wran-
gling domain and the same specifications considered in prior
work [16]. The linguistic engine is built using NLTK (with
WordNet interface) [7] and spaCy [27]. In what follows, we
elaborate other key implementation details.

Deep Learning Model. Given a visualization query in
English as well as a table that corresponds to the visual-
ization, Poe incorporates the pre-trained weakly supervised
model from the TaPas tool, to generate the top-𝑘 answers as
the starting point of the system.

Rendering Visualization as Table. Similar to
VisQA [22] and Viser [42], Poe also needs to con-
vert a visualization into its table representation, with
additional visual properties attached, such as colors,
shapes, etc.. In particular, Poe invokes the Vega-Lite [34]
visualization tool to render the visualization from the
benchmark specification with extra accessible rich internet
application (ARIA) attributes [40], and retrieves them by
parsing together with additional visual properties as a
compact table. This reduces the complex visualization to its
succinct tabular format that is amendable to existing data
wrangling DSL.

Other Optimizations. Our implementation performs ex-
tra optimizations in addition to the algorithms presented in
Sections. 4 and 5. First, following the Occam’s razor principle,
Poe explores abstract programs in increasing order of size. In
the meantime, if the size of the candidate answers is a large
number k, Poe may end up exploring many abstract pro-
grams. In practice, we have found that a better strategy is to

exploit the inherent parallelism of our algorithm. Specifically,
Poe uses multiple threads to search for abstract programs
for different answers.

Our deduction engine is inspired by prior works [15, 16],
whose core procedures include: (1) every DSL construct is
attached with its abstract semantics in form of first-order
formulas describing the input-output behavior, (2) the seman-
tics of a partial program is computed by conjoining the side
effects of each individual construct, and (3) an SMT query
is issued to encode the consistency between the abstract
semantics and the user intent via implication.
Motivated by the Neo system [15], our implementation

of CountConsist performs an additional optimization over
Algorithm 1: Since different partial programs may share the
same SMT specification, Algorithm 1 ends up querying the
satisfiability of the same SMT formula multiple times. Thus,
our implementation memoizes the result of each SMT call to
avoid redundant Z3 queries.

Finally, since using a łuniversal DSL" for all visualization
queries may significantly increase the search space of the
synthesizer, motivated by the Lift framework [1], Poe will
refine the DSL constructs on-the-fly and filter out irrelevant
or redundant constructs with respect to the query and the
visualization. In particular, Poe starts with a smaller DSL
with constants that are relevant to the question, and to ensure
completeness it gradually increases the DSL constructs on-
the-fly if it fails to find any feasible candidate programs using
the current DSL.

Perplexity Computation. Recall that in Section. 5, our
optimal synthesis relies on computing the perplexity of each
candidate abstract program. Because perplexity measure-
ment of an abstract 𝑃 requires a background probability
model of 𝑃 , we adapt a similar statistical model from the
Morpheus system [16], which uses a 2-gram model trained
on 15,000 code snippets collected from Stackoverflow. Since
Poe’s search strategy always starts with an abstract pro-
gram 𝑃 derived from abstract synthesis, PPL(𝑃) is weighted
slightly higher than NSyn(𝑃) in order to balance the objec-
tive function.

7 Evaluation

In this section, we describe the results for the experimental
evaluation, which is designed to answer the following key
research questions:

1. RQ1. Performance: How does Poe compare against
state-of-the-art tools on visualization queries?

2. RQ2. Effectiveness: Can Poe rectify wrong answers
proposed by other tools?

3. RQ3. Explainability: Does Poe synthesize explana-
tions that well capture the question intentions and
make sense to human end-users?
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Figure 7. Performance comparison between the original
pipeline from VisQA (baseline), TaPas and Poe.

4. RQ4. Ablation: How significant is the benefit of ab-
stract synthesis (Section. 4) and optimal alignment
(Section. 5)?

Benchmarks. We evaluate Poe on a total number of 629
visualization question-answering tasks used in VisQA [22].
Specifically, these tasks contain visualizations collected from
different real-world data sources and non-trivial questions
in natural language proposed by real users from Mechani-
cal Turk. The types of questions cover including retrieval,
aggregation, assertion, and comparison, etc.

Experimental Setup. To evaluate the effectiveness of
Poe, we choose two state-of-the-arts, VisQA and TaPas [20].
In particular, TaPas leverages a weakly supervised model
and provides an end-to-end way to directly predict the an-
swer without explicitly generating logic forms, where Poe
collects top-30 answers from TaPas as input to its abstract
synthesis component. VisQA is an automatic pipeline for
answering natural language questions about visualizations
and it builds on top of Sempre [6], a question-answering
system for relational data tables.

All experiments are performed on Amazon EC2 platform
with a t3a.xlarge instance. The time limit for a single task is
5 mins. We set the balance coefficient 𝑞 = 3 by default5.

7.1 Comparison against State-of-the-Arts

To answer RQ1, we compare Poe against VisQA and TaPas

on all the 629 VisQA benchmarks discussed earlier. We mea-
sure the total number of benchmarks solved, which is shown
in Figure. 7. As we can see, within given time limit, Poe solves
370 (59%) benchmarks, whereas VisQA solves 274 (44%) and
TaPas solves 229 (36%). By comparison, Poe solves 11% more
benchmarks than VisQA and 23% than TaPas.

Additionally, we showmore details of the comparisonwith
respect to different questions types, as shown in Table. 1. Poe
solves on average 35% (resp. 25%) more benchmarks across

5Note that in practice 𝑞 may need to be adjusted dynamically depending on

the quality of candidate programs derived from abstract synthesis. For ex-

ample, for some benchmarks the statistical model may not produce enough

candidate answers and 𝑞 needs to shrink accordingly so as to prevent gen-

erating programs that are too abstract.

Table 1. Comparison on number of benchmarks solved by
different tools across different types of questions.

question type total
VisQA

(baseline)
TaPas

Poe

(top-1)

retrieval
183
(29%)

101
(55%)

98
(54%)

123

(67%)

comparison
87

(14%)
50

(57%)
0

(0%)
71

(82%)

aggregation
253
(40%)

92
(36%)

119
(47%)

161

(64%)

other
106
(17%)

31

(29%)

12
(11%)

15
(14%)

total
629

(100%)
274
(44%)

229
(36%)

370

(59%)

different types of questions compared toVisQA (resp. TaPas),
and has a lower variance on performance of different types
of questions, whereas TaPas only supports and is good at a
restricted portion of questions. Thus, we believe these results
answer RQ1 in a positive way.

7.2 Benefits of Optimal Alignment and Abstract

Synthesis

To study the effectiveness of abstract synthesis and optimal
alignment, we further perform an ablation study in which
we compare Poe against two of its other variants:

• PoeO : This variant only performs optimal synthesis
on the full search space.
• PoeA : This variant only performs abstract synthesis-
followed by an enumerative search to pick the first
feasible concrete program.

The results from this evaluation are summarized in Ta-
ble. 2 with given timeout of 5 mins. As we can see, without
abstract synthesis procedure, PoeO is still able to solve a
certain number of benchmarks (357) since the consistency
constraints provide very strong hints that greatly reduce
the search space. While for PoeA without optimal synthesis,
majority of the synthesis calls are timed out. Without priori-
tization provided by optimal synthesis, PoeA finds it difficult
to reach the optimal solution quickly even after search space
pruning. The full version of Poe combines both the bene-
fits of the abstract synthesis and optimal synthesis and thus
reaches the best results among the variants. Thus, we con-
clude that the ablation study provides positive evidence for
RQ4 and shows the necessity of both procedures.

7.3 Evaluation on Effectiveness

To answer RQ2, we specifically measures the flip rate of Poe
over TaPas, i.e., the percentage of the benchmarks that Poe
can rectify on top of TaPas. We compute flip rate of tool 𝐴
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Table 2. Comparison between TaPas and different ablated
variants of Poe.

variant TaPas Poe PoeA PoeO

solved
delta (%)

229
(+0%)

370
(+23%)

194
(-5%)

357
(+21%)

#timeout - 36 586 58

over tool 𝐵 according to the following equation:

𝐹𝐿𝐼𝑃 (
𝐴

𝐵
) =
|𝑆𝑈𝐶𝐶 (𝐴) ∩ 𝐹𝐴𝐼𝐿(𝐵) |

|𝐹𝐴𝐼𝐿(𝐵) |

where 𝑆𝑈𝐶𝐶 returns the set of successfully solved bench-
marks and 𝐹𝐴𝐼𝐿 returns the set of failed benchmarks. Our
results show that Poe has a flip rate of 39% over TaPas, which
means it can successfully łfixž 39% of the benchmarks that
TaPas fails to solve. In particular, for retrieval (resp. aggrega-
tion, comparison) type of questions, the flip rate is 36% (resp.
37%, 78%). In summary, we believe our proposed techniques
in Poe are effective and thus RQ2 is answered in a positive
way.

7.4 A User Study on Explainability

To answer RQ4, we carry out a simple user study on a com-
parison of the usability and explainability between TaPas

and Poe. The design of the user study is inspired by the
one carried out by VisQA [22]. Specifically, 3 students with
elementary background of data analytics are asked to use
Poe and TaPas and perform the following evaluations given
real-world visualizations (and their corresponding parsed
tables):

• Task 1 (Usability): Ask a question regarding the
given visualization and evaluate which tool returns
the accurate desired answers.
• Task 2 (Explainability): Inspect the returned answer
together with the explanation generated by Poe and
tell whether the answer is well explained and aligns
with the user intent.

In particular, 3∼5 individual questions were asked in each
task, and the participants were asked to make a choice be-
tween Poe and TaPas for each question based on the usability
and explainability of the answers given by both tools.

As a result, the participants indicate in our results that Poe
is demonstrating better usability than TaPas in that it solves
more questions asked by users. Out of all the visualization
question answering tasks they issued, Poe finds the correct
explanations that well match their original intents of the
questions in majority of the cases. Thus, for RQ3, we believe
the user study provides positive evidence about the usability
of Poe and explainability of the explanations generated.

7.5 Discussion

Like any other techniques, our approach also has its own
limitations. Based on the result in Figure. 7, we manually
inspect all these cases and notice that the issue is caused by
the following reasons:

Timeout. Poe uses a timeout of 5 mins similar to previous
works [15, 16]. As a result, 5% of difficult benchmarks do not
terminate within the given timeout.

Incomprehensible Question. Since the natural ques-
tions from VisQA benchmarks are obtained from Amazon
Mechanical Turk, some of the questions are found to be
incomprehensible, e.g.:

• łWhat is highestt change in income?ž ś typo.
• łIn which year investors of all age groups took bigger
risks?ž ś łbiggerž should be łbiggestž.
• łWho has roughly 5 votes?ž ś factual error; no one has
5 votes in the visualization.

Such benchmarks create difficulties for all of the tools we
experiment on.

Fallback Strategy. Poe starts its core synthesis algorithm
based on the top-𝑘 answers from TaPas. In some cases, the
top-𝑘 answers may all be wrong and do not provide any
hints to derive the correct solution. Then Poe has to leverage
a simple fallback strategy to dynamically increase the size
of 𝑘 , which may lead to timeout.

Limitation of NLP Modules. Some of the benchmarks
are found to be also challenging for the current NLP tech-
niques that the tools depend on. For example:

• łHow many countries in Asia will have their economy
improved based on majority votes?ž ś requires a knowl-
edge base backend for inferring the implication of
łcountries in Asiaž.
• łHow many teams are in the Central Division?ž ś re-
quires alignment with entities from the visualization
to the range of łCentral Divisionž.
• łWhat month has the least recorded weather?ž ś re-
quires aligning a implicit summary of more than one
weather types to represent the weather before aggre-
gation.

Despite the aforementioned limitations, our core tech-
nique is not restricted to visualization tasks. We anticipate
that a similar idea can be instantiated to other tasks with
multi-layer specifications (e.g., text, table, code, visual ob-
jects, etc.) that combine a top-down search procedure with
an off-the-shelf statistical model. For instance, video under-
standing, structural-object queries, data wrangling, etc.
There are various directions that Poe can be extended

to handle a broader spectrum of visualization queries. For
example: 1) An extended version of the DSL that considers
more data wrangling operations that cover more long-tailed
queries in our benchmark; 2) A more sophisticated linguistic
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engine, 3) A better deep learning model trained from a better
dataset.

8 Related Work

Machine Learning for Synthesis. There has been signif-
icant interest in automatically synthesizing programs given
high-level specifications of different granularity [3, 8, 17,
18, 21, 30, 31, 38], such as program sketches [14, 38, 39],
types [26, 30], logical forms [8, 39] and natural languages [9,
10, 35, 44, 46]. Recently, machine learning is extensively
used for better prioritization of programs for search-based
approaches [3, 5, 9, 10, 15]. On the other end, program synthe-
sis techniques and formal methods are also used to provide
rich and generalizable feedback for machine learning mod-
els [2, 4, 11, 36, 49]. For example, SQLizer [44] performs
program repairs based on type-directed program synthesis;
Concord [11] formalizes a generic deduction engine and per-
forms deduction-guided off-policy sampling to enhance the
reinforcement learning for program synthesis; Probe [4] uti-
lizes guided bottom-up search to boostrap machine learning
model for synthesis; Metal [37] uses graph-based models
of reinforcement learning for synthesis with rewards from
SMT solvers. Different from prior work [22, 44] that rely on
a semantic parser whose training data is difficult and expen-
sive to obtain, our approach focuses more on interpreting
and rectifying the direct answers from weakly supervised
machine learning models by synthesizing programs as ex-
planations. Such models become increasingly popular due
to the ease of obtaining training data.

Model Interpretability. Despite their popularity, ma-
chine learning models are often applied as black boxes. How
to interpret the predicted results remains an important, yet
challenging task. Ribeiro et al. [32] proposed a method to
explain models by presenting representative individual pre-
dictions and their explanations. In deep learning, there are
efforts to perturb the input to a neural network and visualize
its influence to the output. Clark et al. [12] analyzed the at-
tention mechanisms of pre-trained models and demonstrated
syntactic information captured in these models. Petroni et al.
[29] considered language models as knowledge bases. How-
ever, none of them can achieve rigorous explanation like
what a synthesized program (e.g. generated by Poe) does.

Visualization / Table Question Answering. Semantic
parsing of natural language queries to SQL has attracted
increasing interest since the release of datasets like Wik-
iSQL [48] and Spider [47]. Their leaderboards have been fre-
quently updated by newly developed encoder and decoder
architectures. For example, RAT-SQL [41] included schema
encoding, schema linking, and feature representation in a uni-
fied relation-aware self-attention framework. Both autore-
gressive AST-based top-down (e.g., Yin and Neubig [45]) and
bottom-up parsers (e.g., SMBOP [33]) have been proposed.

Most of the those studies assume the existence of datasets
that map natural language queries to logic forms or interme-
diate representation, which could be used to train encoders
and decoders. Recently, weakly supervised approaches like
TaPas [20] that do not rely on annotating logic forms, can
be trained on larger corpora, thus outperform state-of-the-
arts. Our evaluation shows that our introspective synthesis
approach that reconciles the power of symbolic reasoning
and machine learning can significantly push the boundary
of visualization queries.

9 Conclusion

We have proposed a new methodology for synthesizing pro-
grams from natural language and applied it to the problem of
answering visualization queries. Startingwith a few tentative
answers obtained from an off-the-shelf statistical model, our
approach first invokes an abstract synthesizer that generates
a set of sketches that are consistent with the answers. Then
we design an instance of optimal synthesis to complete one
of the candidate sketches by satisfying common type con-
straints and maximizing the consistency among three parties,
i.e., natural language, the visualization, and the candidate
program.
We implement the proposed idea in a system called Poe

that can answer visualization queries from natural language.
Our method is fully automated and does not require users
to know the underlying schema of the visualizations. We
evaluate Poe on 629 visualization queries and our experiment
shows that Poe outperforms state-of-the-arts by improving
the accuracy from 44% to 59%.
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