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Abstract

Deduction-Powered Neural Program Synthesis:

A Synergistic Perspective
by

Yanju Chen

Program synthesis has found its unique position in automated programming for both
end-users and developers; it is changing the way that users code. Recent advances in deep
learning and computer-aided reasoning for program synthesis have greatly pushed both
techniques for an open range of domains, e.g., data analysis, high-performance computing,
design and reasoning of complex systems, web3 security and science. While algorithms
from these two paradigms may place different assumptions of the problem (e.g., modality
of specification) and guarantees for the result (e.g., completeness), it is usually difficult
for users to benefit simultaneously from both. In fact, feedback generated by statistical
and logical reasoning algorithms are usually found useful for each other, but they are
seldom integrated in a seamless way for program synthesis due to the aforementioned
difference.

Motivated by these challenges, this dissertation presents a program synthesis frame-
work that unifies the two paradigms of statistical and logical reasoning. Specifically, we
address this problem by three aspects. We first describe a unified interface that encodes
user-provided specification from multi-modalities into machine-readable constraints by a
hybrid approach of reasoning. The framework’s core infrastructure is then powered by
deduction-guided reinforcement learning, a novel approach that seamlessly incorporated
feedback from logical reasoning into statistical models. We further demonstrate the ez-

tent of the framework by a derived system for reasoning and refinement of deep learning

1X



model’s predictions.

We implement the proposed techniques in research prototypes, whose effectiveness is
confirmed by a set of extensive evaluations. Our proposed framework also brings improve-
ments for end-user programming via broaden expressiveness, enhanced explainability and

natural interactivity.
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Chapter 1

Introduction

With the growing power of computation, program synthesis is gradually changing the
way that users code: it helps automate tedious tasks (e.g., Microsoft FlashFill [49]),
complete code (e.g., OpenAl Codex [23]) and refactor code (e.g., IntelliJ [77]). While
the philosophy behind program synthesis is not restricted to automation of tedious pro-
gramming tasks, it is more about automation of problem solving and solution discovery,
as seen in competitive programming (AlphaCode [61]), math theorem proving (Google

HOList [7]), and more — a thought process broadly required by all sciences.

1.1 Overview

Given a high-level specification of user intent, modern program synthesizers perform
some form of backtracking search to find a program that satisfies the specification [45] 43,
109]. However, due to the enormous size of the search space, synthesizers additionally
use at least one of two other techniques, namely logical and statistical reasoning, to
make this approach practical. While both logical and statistical reasoning have been

shown to dramatically improve search efficiency, there are still key challenges for existing



Introduction Chapter 1

approaches:

1. Synthesized programs may not fully match user intent due to the incomplete nature
of a single specification. Additional specifications are needed for refinement of

result.

2. The two modes of reasoning are not tightly combined. For example, feedback from

logical reasoning is often useful but not leveraged by statistical reasoning.

Multi-Modal E
ificati > Reasoning
Specification

Interface Core Extent

__— Visualizationﬁ

Statistical — Program — Web BrowserQ

Reasoning

A 4

A

Figure 1.1: An overview of my dissertation research covering three aspects of a pro-
gram synthesis framework.

This dissertation explores new paradigms that broaden the extent of program syn-
thesis algorithms by tackling the aforementioned key challenges. [Figure 1.1 shows an
overview of my dissertation research covering three aspects of a program synthesis frame-

work:

e The interface exploits the power of multi-modal specification that allows users
to express their intent in multiple modalities, such as input-output examples, nat-
ural language descriptions, etc. We developed MARS [27], a synthesizer that can
capture user intent beyond classical programming-by-example (PBE) tasks by en-
coding extra specification with statistical reasoning and decoding its output to

guide the logical reasoning for synthesis.

e The core resides with a novel synthesis paradigm that tightly couples logical and

statistical reasoning, denoted as deduction-guided reinforcement learning.
2
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We developed CONCORD [28], a synthesizer that utilizes feedback from logical rea-
soning to improve the search performed by statistical reasoning. In particular,
CONCORD frames a program synthesis problem as an instance of reinforcement
learning, and extends the original learning algorithm to encode results from logical
reasoning as additional training signals during search. The design of the core syn-
thesis algorithm is flexible, in that it also allows improvement on top of statistical

reasoning.

e The extent connects the interface and core with broader interdisciplinary scenar-
ios to push for the boundary and imagination of program synthesis. We developed
PoE [31], a synthesizer that originates and extends from the synergistic bond es-
tablished in CONCORD: it initiates the logical reasoning to refine the predictions
from off-the-shelf statistical model, by synthesizing a program that best explains
one or more of the predictions. The core insight of POE is to decipher a predic-
tion by formalizing it as specification for a synthesis problem, thus exposing more

information from the program synthesized that helps with the search.

This dissertation presents the above techniques under a unified framework, whose
core philosophy resides in a synergistic bond between the two paradigms for program
synthesis, namely statistical and logical reasoning. In what follows, we elaborate on the

core aspects of this framework.

1.2 Multi-Modal Specification

Due to the incomplete nature of input-output examples, a synthesizer in a programming-
by-example (PBE) task may generate programs that pass the examples but do not match

the user intent. As a result, the user has to provide additional examples to refine the

3
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results generated by the synthesizer, which imposes a huge burden to the user as it is
tricky to: 1) figure out the root cause of the wrong candidates and 2) come up with
better examples to refine the output of the synthesizer. In fact, on technical forums like
Stackoverflow, a user typically would describe the problem with a combination of data
from multiple modalities: input-output examples, natural language descriptions, partial
code snippets, etc., which as a whole contributes to the user intent in a more thorough
and accurate way. This motivates MARS [27], a synthesizer that is capable of capturing
user intent in multi-modal specification.

The core of MARS consists of two folds: a logical reasoning engine that prunes program
search space, and a statistical model that learns to prioritize search preference over

promising programs. MARS captures specification of different types in different ways:

e For hard specification that the synthesized program must always satisfy, such as
input-output examples, MARS encodes them directly as logical forms like existing

approaches;

e For soft specification that the synthesized program should try to satisfy, such as nat-
ural language descriptions, MARS captures them using a statistical model (neural
network) since they are mostly noisy. MARS then devises a set of logical predicates
to describe the implication of the output of statistical model, which encodes the

implication of soft specification.

As a result, MARS finds an optimal solution program by solving the problem with
logical forms encoded from both types of specification, i.e., MARS finds programs that
1) satisfy all hard specification, and 2) satisfy the most soft specification. On a set
of 80 challenging real-world data science tasks, MARS demonstrates the effectiveness of
incorporating multi-modal specification by reducing more than 80% of the timeout cases

of state-of-the-art tools and reaches an averaged 15x speedup for solved benchmarks.
4
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Overall, MARS shows the power of multi-modal specification for enriching the interface
of a typical program synthesis framework, which consolidates a broader spectrum of
inputs for the core algorithms of the synthesis framework, and motivates the exploration
on an in-depth connection between the two components mentioned above for logical and

statistical reasoning.

1.3 Deduction-Guided Machine Learning

Existing synthesizers like MARS [27] contains two modes of reasoning, namely logi-
cal and statistical reasoning. Even though they are proven to be effective for program
synthesis, they are not tightly coupled in existing synthesizers. In particular, feedback
from logical reasoning is not leveraged by statistical models, which deviates from the
intuition of human thought process, where deduction (logical reasoning) and perception
(statistical reasoning) are coupled synergistically in problem solving.

Motivated by such observation, CONCORD [2§] is developed to bridge the gap between
the two modes by combining them in a synergistic way. Similar to prior techniques,
CONCORD starts with a statistical model (henceforth called a policy) that is trained
offline on a representative set of training problems and uses this policy to guide the search.
However, unlike prior techniques, CONCORD updates this policy online at synthesis time
and gradually improves the policy by incorporating feedback from a logical reasoning
engine. Specifically, CONCORD formulates program synthesis as a reinforcement learning
(RL) problem and devises a novel algorithm that converts feedback from logical reasoning
into representative data that is then used for improving the policy. While RL proves to
be a good fit for the problem, standard RL algorithms typically update the policy based
on feedback received on search spaced that is already explored. However, in the context

of program synthesis, logical reasoning can also provide feedback about search space that

5
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has not been explored. On a set of 100 challenging list processing problems, CONCORD
is proven effective in that it solves 15% more of them than state-of-the-art synthesizers
with an average of 8.7x faster.

CONCORD’s core algorithm is dubbed as deduction-guided machine learning. On one
hand, CONCORD demonstrates the effectiveness of such approach when the user has access
to the statistical model; on the other, such a tight bond also applies to more complex
black-box deep learning models, on a synthesizer I develop called POE [31]. POE is
motivated by visualization question answering (VQA) tasks, where a model is required
to answer visualization queries from natural language descriptions. Since annotated data
that contains both queries, logical forms and answers is very expensive, recent state-of-
the-art deep learning models are trained only with queries and answers in exchange for
more data and less manual efforts, which in return, are not always leading to satisfactory
answers. To mitigate this problem, POE incorporates a synergistic procedure between
the logical and statistical reasoning to refine potentially problematic predictions from
the deep learning model. In particular, POE generates programs that are consistent
via program synthesis with model predictions as specification, and decides the most
promising prediction by selecting the one that best aligns with the problem context. The
core insight behind POE is that, even though the statistical model generates a wrong
answer that is derived from a sequence of hidden inference steps, part of them may still
be sensible since training is based on a large corpus; by synthesizing the program that
satisfies the prediction, more information is exposed to help make better predictions.
As a result, POE’s experiments demonstrate its effectiveness on a set of 629 real-world
challenging VQA tasks, by a 15% improvement on the number of benchmarks solved
than state-of-the-art methods. POE opens up brand new potentials for coupling the two

modes of logical and statistical reasoning.
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In summary, this dissertation makes the following key contributions:

e We design a customized deep neural network architecture for learning the user’s
preference using an aligned corpus that maps the user’s textual information to
the desired solutions. Based on this architecture, we design a novel multi-layer
specification that allows the end-user to specify her intent using soft and hard

constraints.

e We propose MARS, a Max-SMT based synthesis framework that takes as input a
multi-layer specification and enumerates solutions that are close to the user’s intent.
Our framework is parameterized with the underlying neural networks and the DSL,

which can be easily instantiated to different domains.

e We propose CONCORD, a synthesizer consisting of: 1) a new synthesis algorithm
based on reinforcement learning that tightly couples statistical and deductive rea-
soning, and 2) an off-policy reinforcement learning technique that uses the output

of the deduction engine to gradually improve its policy.

e We identify and present a new type of program synthesis problem in visualization
question answering, where a deep learning model’s (potentially noisy) output is
used as specification to synthesize programs that explain the model’s behavior,

which is dubbed as introspective program synthesis.

e We propose POE, a synthesizer equipped with: 1) an abstract program synthesis
algorithm for quickly inducing the search space given noisy specifications from
a deep learning model’s output, and 2) an optimal program synthesis algorithm
for finding programs that best match the consistency constraints implied between

natural language questions and visualizations.
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e Our end-to-end systems — MARS, CONCORD and POE- are empirically evaluated

in different program synthesis domains to show the effectiveness of the proposed

techniques and algorithms.
The rest of this dissertation is organized as follows:

. describes a program synthesis framework MARs that utilizes multi-layer

specification, where statistical outputs are encoded into logical reasoning.

° presents a program synthesis algorithm CONCORD that connects deduction-

based reasoning with machine learning.

. extends the synergistic bond between statistical and logical reasoning

into the POE framework that provides explanation and refinement for deep learning

models.

. discusses related work and concludes.



Chapter 2

MARS: Program Synthesis Using

Multi-Layer Specification

In today’s data-centric world, data analytics has become one of the key elements in our
daily life, including science, politics, business, and international relations. On the other
hand, due to the messy nature of data in different application domains, data scientists
spend close to 80% [36] of their time performing data wrangling tasks, which are consid-
ered to be the “janitor work” of data science.

To mitigate this problem, in recent years, there has been significant interest in end-
user program synthesis for data science, in which the goal is to automate tedious data
analytics tasks from informal specifications, such as input-output examples [49], 43] or
natural language [113] [90]. For instance, programming-by-example (PBE) has been used
to automate tedious tasks such as string manipulations in Excel [49], data wrangling tasks
on tabular and hierarchical data [43] 112], and SQL queries [106]. Despite significant
progress in PBE systems, expressing the user intent still remains a major challenge. As a
result, due to the incomplete nature of input-output examples, a synthesizer may generate
programs that pass the examples but do not match the user intent. In that case, the

9
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user has to provide additional examples to refine the results generated by the synthesizer,
which imposes a huge burden to the end-user as it is tricky to figure out the root cause
of the wrong candidates [82] and come up with new examples to refine the output of the
synthesizer.

To address the above limitation, this chapter aims to design a synthesis framework
that accurately captures the user intent. By looking at hundreds of relevant data an-
alytics questions from StackOverflow, we observe that an end-user typically describes
her problem in a combination of input-output examples, natural language description,
partial code snippet, etc. To give readers our insight, consider an example from Stack-
Overflow in [Figure 2.1 Here, the user has an input table and wants to transform it
into an output table with a different shape. As shown in [Figure 2.1], the correct solution
(on the right) requires merging two column (i.e., unite), aggregating (i.e., group_by,
summarise) the sum of another column, and finally pivoting (spread) the returning table.
To solve this benchmark, it takes MORPHEUS [43], the state-of-the-art synthesizer for
data wrangling tasks, around five minutes. Moreover, if the program found by MOR-
PHEUS does not match the user intent, she has to refine the input-output examples and
rerun the synthesizer.

In a lot of cases, the information provided by the end-user typically goes beyond input-
output examples. In most helper forums (e.g., StackOverflow), we observed that people
usually describe problems in the combination of natural language and input-output ex-
amples. For instance, looking at the example in the user not only provides
input-output examples, but also indicates a rough “sketch” of the solution through natu-
ral language. For instance, the “reshape” and “count” keywords indicate that the solution
should use library functions that perform pivoting (i.e. spread or gather) and aggrega-
tion (i.e., group_ by + summarise), respectively. Other keywords such as “total found”

suggest that sum should be used together with summarise, and the keyword “Sp B pos”
10
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SRS —— | . crpt tffeshapd anclcounthelumns within dataset

. description
summarise
I/0 Example
group_by TBL_7=unite(input, 'COL", species’, 'inf_status’)
TBL_3=group_by(TBL_7, 'site’, COL")
TBL_1=summarise(TBL_3,COL2=sum( TOT"))
description Output=spread(TBL_1, COL", COL2")

| need to reformat the datd so that thefe is just orle row per site visit (i.e. in a given site name and
date combo) with cblumis for by gpecies and the fish status (i.e. speciesA_pos,
SpeciesA_neg, . etc).
figured | could use function but still nedd to sum within site visits as reshape will take the
first row. My thoughts Wereto use split/apply; or loops etc but tried various combinations
and not getting anywhere. apologies I'm not famifliar with'R. any comments appreciated!

1/0 Example

Figure 2.1: A motivating example from StackOverﬂowEl

that the function call unite should be used. If we use arrows to visualize the connection
between text description and function calls from data-wrangling libraries, we can observe
a strong connection between the user intent and the solution.

However, real world textual information is inherently noisy and ambiguous. As a
result, it is very challenging to derive the right mapping from the textual information
to their corresponding function calls. Second, even if we have the right mapping, it is
still unclear how to integrate this information into most existing PBE systems [49] [10,
112, [106], 118], which typically rely on their efficient search algorithms by leveraging the
syntax or semantics of the input-output examples.

We propose MARS, a novel synthesis framework that takes as input a multi-layer
specification that appears in a large class of applications. Here a multi-layer specification
is composed by input-output examples, textual description, and partial code snippets
that express the user intent. To solve a multi-layer specification synthesis (MSS) problem,
MARS encodes input-output examples as hard constraints which have to be satisfied, and
denotes additional preferences (e.g., textual description, partial code snippet, etc) as soft
constraints which are preferably satisfiable. After that, the MSS problem is reduced to

the maximum satisfiability modulo theories (Max-SMT) problem which can be efficiently

"https://stackoverflow.com/questions/39369502
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solved by an off-the-shelf SMT solver [37, 16]. The Max-SMT encoding of the MSS
problem aims to satisfy the input-output constraints and maximize the user intent that
is obtained from natural language, partial code snippet, and intermediate results.

To accurately capture the user intent from noisy and ambiguous description, we pro-
pose a hybrid neural architecture that combines the power of an LSTM-based sequence-
to-sequence (i.e., seq2seq) [101] model and the apriori algorithm [1] for mining association
rules. In particular, our seq2seq model encodes the probability of a symbolic program (i.e.,
a program of which constants are unknown.) given its corresponding textual description.
However, like other deep learning applications, the performance of a seq2seq model heavily
relies on the quality and quantity of the training data. Therefore, as shown in [Section 2.6}
for benchmarks of which solutions are complicated and rarely appear in the training set,
our seq2seq model may not suggest the right candidates. To mitigate this problem, we
leverage the apriori algorithm for mining the extra hidden information that can not be
covered by the seq2seq model. Intuitively, through unsupervised learning, the aprior:
algorithm is used to mine association rules that indicate the hidden connections between
words and individual functions. After that, we use the association rules for refining the
original rankings of the seq2seq model.

To evaluate the effectiveness of our technique, we instantiate MARS into the data
wrangling domain and compare it against MORPHEUS [43], the state-of-the-art PBE
synthesizer for data wrangling tasks. We evaluate both approaches on the 80 benchmarks
from MORPHEUS [46], and show that MARS outperforms MORPHEUS in terms of running
time and number of benchmarks being solved. For challenging benchmarks, our approach
is on average 15x faster than the MORPHEUS tool.

To summarize, this chapter focuses on the following key contributions:
e We design a customized deep neural network architecture for learning the user’s

12
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preference using an aligned corpus that maps the user’s textual information to the

desired solutions.

e We design a novel multi-layer specification that allows the end-user to specify her

intent using soft and hard constraints.

e We propose a Max-SMT based synthesis framework that takes as input a multi-
layer specification and enumerates solutions that are close to the user’s intent. Our
framework is parameterized with the underlying neural networks and the DSL,

which can be easily instantiated to different domains.

e We integrate MARS’s hybrid model into the MORPHEUS tool and empirically evalu-
ate our approach in the data wrangling domain by showing that MARS outperforms

the state of the art in running time and number of benchmarks solved.

2.1 Overview

In this section, we give an overview of our approach with the aid of the motivating
example in Specifically, as shown in [Figure 2.2] we use a simplified domain-
specific language (DSL) based on dplyr and tidyr, which are two popular libraries for
data wrangling tasks in R.

In this example, the user wants to perform a complex data wrangling task which
requires concatenating two columns (i.e., unite), aggregation (i.e., summarise), and ta-
ble pivoting (i.e., spread). We now explain the key ideas that enable MARS to solve
this complex problem.We use abstract syntax trees (AST) to represent programs. For
example, [Figure 2.3| shows an AST that represents a symbolic program where some of
the nodes are still unknown. A symbolic program can be instantiated in many ways and

can generate several thousand concrete programs. For instance, the concrete program

13
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T — x; | spread(T, COL,COL) | unite(T, COL, COL)
group by(T, LIST) | summarise(T, AG, COL)
gather (T, LIST) | select(T, LIST)

LIST — [1] | [1,21 | ... | [4,5]
COL— 0| ... | 10

AG — sum | mean | max | min

Figure 2.2: The grammar of a DSL for data wrangling tasks in dplyr and tidyr.

represented in corresponds to the following assignment:

{N; — select, Ny > gather, N3+ [1,2], Ny+— xo, N5 +— [1,3]}

This approach, while being general, has several drawbacks. First, since input-output
examples are imprecise specifications, a synthesizer may generate a candidate that does
not match the user intent, which requires the user to provide additional examples to
refine the result [106, 49]. Second, given a specific task, there can be many candidates
satisfying the input-output examples but only few of them match the user intent. In this
case, a synthesizer typically enumerates solutions according to some heuristic, such as
the size of AST [47], or keywords provided by the user [I06]. None of the previous work
proposes a systematic solution for unifying the user intent from different sources.

MARS takes a different step by proposing a multi-layer specification that combines
input-output examples with additional hints from the user. For instance, looking at
the StackOverflow example in[Figure 2.1} in addition to the input-output tables, the user
also provides extra hints using natural language and intermediate results. Specifically, the
word “reshape” in the title indicates that the solution should use either spread or gather,

and “count” suggests the occurrence of aggregate functions(i.e., summarise, group_by).
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To incorporate the additional information, we propose a novel hybrid neural architec-
ture by leveraging the advantages of a seq2seq [101] model and the apriori algorithm for
learning association rules [2]. In particular, the seq2seq model takes as input the text
description and returns the most likely symbolic program according to a statistical model
trained from a corpus. For the example in [Figure 2.1], our seq2seq model suggests some

of the following candidates:

{mutate,group_ by,summarise,spread} (92)

{group_by,summarise,mutate,select} (91)

{unite,group_ by,summarise,spread} (79)

Each item in the list is a pair (P, w;) where P represents a symbolic program that we
learn from the data, and w; denotes the likelihood of being part of the solution. By
leveraging the additional description from the user, the seq2seq model is able to suggest
candidates that are close to the user intent. However, due to the size and quality of
the training data, for complex solutions which rarely appear in the corpus, the seq2seq
model is unlikely to suggest the correct symbolic program. As a result, a synthesizer may
still spend a significant amount of time enumerating wrong candidates. For instance, by
following the ranking generated from the seq2seq model, a synthesizer has to explore 130
symbolic programs before finding the right candidate.

To mitigate the above limitation, we leverage the apriori algorithm [I] for mining
association rules. Intuitively, an association rule, which is learned from a corpus of

data through unsupervised learning, aims to identify the hidden connections among the
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keywords. For instance, given the text description in [Figure 2.1 our algorithm is able
to discover the following rule which suggests that spread has a high chance to appear in

the solution:

{reshape, count} = {spread}

and the following rule indicates that unite should also appear in the solution:

{_,reshape} = {unite}

Using our refinement algorithm discussed in [Section 2.3.3| our system is able to incorpo-
rate the hints from the association rules to adjust the distribution of the seq2seq model.

For instance, after running the refinement algorithm, the previous ranking is adjusted to:

{unite, group_ by, summarise, spread} (109)

{mutate, group by, summarise, spread} (96)

{group_ by, summarise, mutate, select} (94)

Observe that the score of all three candidates get increased as they are connected to
association rules learned from data. The score of the correct candidate increases more
as this candidate matches more rules than others. As a result, a synthesizer only needs
to explore less than 30 symbolic programs before reaching the right one.

To incorporate the above ranking from our statistical model, MARS provides soft con-

straints in the form of (f(s1, ..., Sx), w;) where f is a k-nary predicate over DSL constructs
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with likelihood weight w;. For instance, the symbolic program of the correct candidate

can be expressed with the following soft constraints:

(occurs(unite), 109) A (occurs(group by), 109)A
(occurs(summarise), 109) A (occurs(spread), 109)A
(hasChild(group_ by,unite), 109)A

(hasChild (summarise,group_ by), 109)A

(hasChild(spread,summarise), 109)

Here, hasChild(s;, s;) is a binary predicate which indicates that the DSL construct s;
should be the parent of s; in the solution. Similarly, occurs(s;) is a unary predicate
asserting that s; should occur in the solution. Given the soft constraints generated by
the hybrid model, the underlying Max-SMT solver in MARS can enumerate candidates
in a way that ) w; is maximized. In other words, MARS always prioritizes candidates
that not only pass the input-output examples, but are also consistent with the user intent

expressed in natural language.

2.2 Problem Formalization

This section proposes a general setting for our synthesis problem, and formally states
the definitions of our multi-layer specification and maximal synthesis.

Given a domain-specific language (DSL) described by a context-free grammar G, our
synthesis framework searches the space of all possible programs up to a given depth.

A DSL is a tuple (X, R, S), where ¥, R, and S represent the set of symbols, produc-
tions, and the start symbol, respectively. Each symbol x € ¥ corresponds to our built-in

DSL construct (e.g., +, spread, gather, select, etc.), constants, and variables. Pro-
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gram inputs are expressed as symbols xi,...,zr € X. Every production p € R has the
form p = (A — x(A4,..., Ag)), where x € ¥ is a DSL construct and Ay, ..., Ay € ¥ are
symbols for the arguments. Symbolic and concrete programs are defined using symbols

from the DSL.

Definition 2.2.1. (Symbolic Program) A symbolic program P is an abstract syntax
tree (AST) where some labels of the AST nodes are represented as symbolic variables yet

to be determined.

Example 2.2.1. shows a symbolic program with depth of size two. Here,
s3, 84, and s5 denote symbolic variables which corresponds to unknown symbols. This
symbolic program corresponds to select(gather(?, ?), 7), where the ? denotes sym-

bolic variables that still need to be determined.

Intuitively, a symbolic program P represents partial programs where some of the
symbols are unknown. In[Section 2.3, we will introduce a neural architecture for learning

the most likely symbolic programs from a corpus of data.

select

Figure 2.3: An example of symbolic program. Figure 2.4: An example of concrete program.

Definition 2.2.2. (Concrete Program) A concrete program P is an AST where each

node is labeled with a symbol from the DSL.
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Example 2.2.2. shows an AST which corresponds to the concrete program:

select (gather (zo, [1,3]), [1,2]).

Definition 2.2.3. (Hard Specification) The hard specification expresses a set of con-
straints that the symbolic program P has to satisfy. In classical PBE systems, we often

refer to the input-output examples as the hard specification. In particular, P(&i,) = Epur-

Example 2.2.3. In MARS, the hard specification is used to encode the input-output
requirement from the end-user. E.g., in |[Figure 2.1 the input and output tables are

translated into hard constraints in M ARS.

Definition 2.2.4. (Soft Specification) The soft specification denotes a set of con-
straints that the symbolic program P preferably satisfies. In particular, each soft con-
straint is denoted by a pair (pr(xi, ..., xx),w) where pr(xi,...,xx) is a k-ary predicate

over the DSL constructs and w represents the predicate confidence.

Example 2.2.4. In MARS, the soft specification is used to encode the user preference in
the form of natural language. For instance, the unary predicate (occurs(x;),w;) encodes
that a DSL construct y; should appear in the program with confidence w;. Similarly, the
binary predicate (hasChild(x;,X;),w;) denotes that a DSL construct y; should appear
as the parent of x; in the program with confidence w;. Note that the weight of each

predicate is automatically learned from a corpus of data.
Now we are ready to formally state our synthesis problem.

Definition 2.2.5. (Maximal Multi-layer Specification Synthesis) Given specifica-
tion (&, U, Y) where € = (T, Towr), ¥ = U (xi,wi), and ¥ represents all symbols in the
DSL, the Maximal Multi-Specification Synthesis problem is to infer a program P such
that:

e P is a well-typed expression over symbols in X..
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L4 P(Tzn) - Tout'

e > w; is maximized.

2.3 Neural Architecture

In this section, we propose a hybrid neural architecture for inferring the most promis-
ing symbolic programs given the user description. In particular, our architecture incor-
porates a sequence-to-sequence (seq2seq) model and the apriori algorithm for discovering
association rules through unsupervised learning. While the seq2seq model is for estimat-
ing the initial score of a symbolic program, the association rules are further used to adjust
the initial score by mining hidden information that can not be identified by the seq2seq

model.

2.3.1 Sequence-To-Sequence Model

The problem of inferring the most promising symbolic programs from user description
can be viewed as a translation between two different languages. In particular, our goal is
to translate from natural language to symbolic programs expressed in our DSL. Inspired
by the recent success in natural language processing, we apply a seq2seq model with Long
Short-Term Memory (LSTM) [52] cells.

As shown in , given a question-solution pair (D, S), where a question is a

user description composed by word tokens d:

D = (dy,ds,...,d,),
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r1: {count}->{group_by, summarise}
r,: {aggregate}->{summarise}

r3: {reshape}->{spread}

1T4: {unique}->{filter}

-0.31 -0.52 -0.69 -0.39
un1te group by summarlse spread

|
|
I
|
|
|
|
1
_______________________________ 1____ ______ — T T /=TT /= _____I
1
1
I

(EH L HEH A H |

T

em beddlng ]
1 .. 1 1 ] I |
reshape count comment appreciate <S0S> unite group_by summarise
encoder : decoder
————————————————————————— [————————————————————————— A

| reshape count ... comment appreciate unite group_by summarise spread l—’ma

r
rules applied

Figure 2.5: The hybrid neural architecture in MARS

and a solution is a symbolic program composed by a sequence of functionsﬂ S

S: (81,82,...,8m),

the seq2seq model is used to estimate the probability of P(S|D), which is then given by:

m

P(S‘D) = P(Sl,SQ,...,Sm‘dl,dg,...,dn) = HP(St’U,Sl,SQ,...,Stfl),

t=1

where v is a fixed-dimensional vector representation of the user description generated by
the encoder.

Internally, the seq2seq model is composed by two components: the encoder and the
decoder. The encoder is an LSTM cell that takes as input a question D and generate its
corresponding vector representation v. At every time step t, we feed each token d; from

the question to the encoder and compute the following functions as given by the LSTM

2Each symbolic program ignores all constant variables and only preserves the name of each function.
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mechanism:

2t = U(Wz : [ht—lv dt])
e = U(Wr : [ht—ladt])
hy = tanh(W - [ry * hy_1, dy])

he = (1 — z) % hy—y +Zt*}zta

where at time step ¢, h; is the hidden state, W, are network parameters that will later be
learned from data, [,] is the vector concatenation operation, - is matrix multiplication,

and o (sigmoid) and tanh are both activation functions that are given by:

1
o(@) = 1467
tanh(z) = &
et +e*

The final vector representation of a question is given by the last hidden state: v = h,,.
Similar to the encoder, the decoder is also composed by an LSTM cell which takes
as input a symbolic program represented by a sequence of functions. The output of the

decoder is a distribution of functions given the current hidden state h;:

where W, and b, are both learnable parameters, and the probability for a specific function

(for example, the jth function) at time step i is estimated by:

exp(u; ;)

> exp(ui;)’

P(Sivj) = P(Si,j|v7517827 "'7Si—1) -
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where u; ; is the jth element of the vector.

Finally, we use the back propagation method with negative log likelihood loss to learn
the parameters of the neural network. The probability of a symbolic program given a
question is computed by estimating the product of the probability at each time step. We
take logarithm of every time step to prevent underflow of the final result, which gives the

equation of the probability score as follows:

P(S|D) = P(s1, 52, ..., Sm|d1,da, ..., dy,) = Z log P(s¢|v, s1, S2, ...y St—1),

t=1

where the most promising symbolic programs have higher scores.

2.3.2 Learning Association Rules

As shown later in due to the quality of the training data, our seq2seq
model alone does not always achieve good performance. Specifically, for complex bench-
marks of which solutions rarely appear in the training data, it is difficult for the seq2seq
model to suggest the right candidates. On the other hand, even though the user cannot
figure out the exact solution for her problem, she may still indicate partial information of
the desired solution using some keywords or phrases. In order to discover hidden infor-
mation that can not be inferred by the seq2seq model, we leverage the apriori algorithm
to mine association rules that will later be used to adjust the rankings from the seq2seq
model.

As shown in [Figure 2.5 let @) be the union of all tokens that appear in the questions

and all functions that appear in a solution:

Q ={q1,42,---,4c,
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and let E be the set of all tokens in a question-solution pair (S, D):
E = U(si,dj) where s; € S,d; € D
An association rule v of a given set F is defined by:
r: X=Y,
where X, Y C ). For example,
{unite, wide} = {spread}

indicates that if the two keywords ”unite” and ”wide” appear in the question, then the
function spread is also appearing in the corresponding solution. Also, rules can apply on

functions:
{filter, summarise} = {group_ by}

which means if both filter and summarise appear in the solution, then the function
group by also appears in the same solution.

To learn the association rules, we run the apriori algorithm on more than 30,000 an-
swer&E] from Stackoverflow. Since the apriori algorithm is based on unsupervised learning,

it may generate rules that are not useful. To address this issue, we further filter out the

3An answer towards a specific question is usually composed by some natural language description
and solution code, which fits the prerequisits of association rules mining.
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association rules of which confidence are low according to the following formulas:

eec B, X Ce
i < € BX
supp(X UY)
conf(X =Y)= ———F—.
( ) supp(X)

Here, supp indicates the frequency of X that appears in the dataset, and conf represents

how often the rule holds.

2.3.3 Score Refinement Algorithm

In this section, we describe an algorithm that refines the score of the seq2seq model
using the association rules in [Section 2.3.2]

As shown in [Algorithm 1] the key idea of our REFINEMENT procedure is to take as
input a symbolic program S together with its original score ¢ from the seq2seq model, and
produce a new score ¢, according to the association rules R discussed in [Section 2.3.2]
Internally, the refined score ¢, is computed based on an accumulative boosting ratio b
that is initialized at line 4. Then for each association rule r;, the algorithm updates the
accumulative boosting ratio based on a weight function 6 as well as a match function that
decides whether the current rule r; = X = Y applies to the current symbolic program

together with its description (D, S):

1 Yee XUY,ecDoreec S
match(r, D, S) =

0 otherwise

Furthermore, the weight function 6 is used to measure the quality of association rule r;

by taking several factors into account, including the confidence (i.e. conf) and support

(i.e., supp) discussed in [Section 2.3.2] number of keywords that appear in rule r;, and
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cost of the DSL construct (e.g. compared to select, mutate is more computationally

intensive).

Algorithm 1 Symbolic Program Score Refinement Algorithm
1: procedure REFINEMENT(R, D, S, ¢, 0)
2: input: association rule set R, question D, solution S with its corresponding score
¢ and weight function 6
3 output: refined score c,
4: b+ 0 > accumulative boosting ratio
5: for rule r; € R do
6
7
8

b < b+ 0(r;) - match(r;, D, S)
¢ —c+b-|c > update score
return c,

2.4 Maximal Specification Synthesis

In this section, we describe how MARS leverages the statistical information (discussed
in to enumerate programs that are close to user intent.

As we mentioned earlier, most PBE synthesizers [49] [10, 43|, 112} 106, T18] perform
program enumeration until they find a program that satisfies the input-output examples
provided by the user.

In order to perform program enumeration, we first need to represent the set of all
possible programs up to a given depth. Consider a DSL D = (X, R, S) where X, represent
DSL constructs with arity-m and m is the greatest arity between DSL constructs. A
symbolic program P represented by a tree of depth k where each node has exactly m
children can represent all programs that use at most k£ — 1 production rules. [Figure 2.6
shows a 3-ary tree with depth 2 that represents all programs that can be constructed
using at most 1 production rule from the DSL shown in Note that m = 3

since the greatest arity between DSL constructs is 3.
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Figure 2.6: An example of a bounded symbolic program.

Example 2.4.1. Assigning N; + unite, Ny — input, N3 — 1, Ny — 2 corresponds to

the program “unite(input, 1, 2)” which unites columns 1 and 2 from table input.

Given a symbolic program P and a DSL D, we encode the set of all possible concrete
programs as an SMT formula p. The Satisfiability Modulo Theories (SMT) problem is
a decision problem for formulas that are composed with multiple theories. To encode
symbolic programs, we use the quantifier free fragment of the theory of Linear Integer
Arithmetic (LIA). A model of ¢ can be mapped to a concrete program by assigning a

symbol to each node in P.

Variables For each node N;, we use an integer variable with domain between 0 and
r, where r = |X|. Assigning N; — k means that we assign to NN; the corresponding
symbol. Let idx : ¥ — Ny be a mapping between a symbol and its position. Since some
production rules p may have arity smaller than m, there may exist some children nodes
Nj; that are not assigned any symbols. To enforce the invariant that each node is assigned
exactly one symbol, we introduce a special symbol p. with index 0 that is assigned to

nodes without symbols, i.e. N; +— 0.

Example 2.4.2. Consider the DSL in [Figure 2.2] idx maps each symbol to a correspond-

ing integer that identifies its position. For example the input x; is mapped to index 1,
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spread to index 2, unite to index 3, etc.

Constraints Let I, O correspond to all symbols that are consistent with the input and
output examples, respectively. To guarantee that all models correspond to well-typed

concrete programs we must enforce the following constraints.

1. The root node N; of P will be assigned a symbol that is consistent with the output

type:

\/ Ny = idx(p

peO

Example 2.4.3. Let O = {z;, spread, unite, group_by, summarise, gather, select}. The

following constraint enforces that the output type is consistent with the output example:

Ny = idx(z;) V Ny = idx(spread) V N7 = idx(unite) VV V; = idx(group_ by)V

N = idx(summarise) V N7 = idx(gather) V N; = idx(select).

2. Let N be the set of all nodes and C'hy;, the set of children nodes of N; € N. Further-
more, let C'(p, V;) be the set of production rules that are consistent with production
p and can be assigned to N;. If a production rule p = (A — x(A4i,...,Ax)) is as-

signed to node N; then all m children Nj, ..., Nj,, will have to be consistent with

Al,...,AkZ

N\ Ni=idx(p) = N \V N =idx(p)).

peX,N;EN NjEChNi p;€C(p,N;)

Example 2.4.4. To guarantee that if production p = unite is assigned to node N; then
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its children are consistent with p, we add the following constraints to ¢:

Ny = idx(unite) = (Na = idx(z;) V Na = idx(spread) V N, = idx(unite)V
Ny = idx(group_by) V Ny = idx(summarise)V

N, = idx(gather) V N, = idx(select)).

Similar constraints are added to guarantee the consistency of N3 and N, when unite is

assigned to V.

3. Let L the set of leaf nodes and T the set of terminal symbols. Only terminal

symbols can be assigned to a leaf node:

/\ \/N idx(p

N,eL peT

Example 2.4.5. Consider the leaf node Ny. To restrict the occurrence of terminals in

N, we add the following constraints:

Ny = idx(z;) V Ny = idx([1]) V Ny = idx([1,2]) V

Ny = idx([4,5]) V Ny = idx(0) V ... V N = idx(10).

2.4.1 Enumerating Maximal Programs

Enumerating models from the SMT formula ¢ described in will corre-
spond to concrete programs. However, this enumeration does not take into consideration
the user intent captured by the neural network described in [Section 2.3l To capture
this information, we extend the SMT formula to a Max-SMT (Maximum Satisfiability

Modulo Theories) formula. A Max-SMT formula is composed by a set of hard and soft
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constraints. The Max-SMT problem is to satisfy all hard constraints while maximizing
the number of soft constraints that can be simultaneously satisfied. This problem can
be further generalized to the weighted Max-SMT problem where each soft constraint c;
can be associated a weight w;. As hard constraints, we use the constraints described in
that guarantee all enumerated programs are well-typed. As soft constraints,

we use the predicates occurs and hasChild encoded as follows.

1. Let predicate (occurs(p;), w;) denote that a production rule p; occurs with likelihood
w; in the final program. This predicate can be encoded into Max-SMT with the

following soft constraints with weight w;.

/\ \/ N; = idx(p;)

pi€A N;eN

Example 2.4.6. The predicate (occurs(spread), 80) is encoded by adding the following

soft constraint to ¢ with weight 80:
N, = idx(spread) V Ny = idx(spread) V N3 = idx(spread) V N, = idx(spread).

2. Let predicate (hasChild(p;, p;), w;) denote that production p; has production p; as
its children with likelihood w;. This predicate is encoded as follows where all soft

constraints have weight w;.

Pip; EAN;EN N;eChy;,

Example 2.4.7. The predicate (hasChild(summarise, group_by), 92) is encoded by adding
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the following constraints to ¢ with weight 92:

(N1 = idx(summarise) = Ny = idx(groupiby)>/\
(N1 = idx(summarise) = N3 = idx(groupiby))/\

(Nl = idx(summarise) = N, = idx(groupiby))

Maximizing the satisfaction of these soft constraints will guarantee that we enumerate
programs that are closer to the user intent. Note that even though the predicates occurs
and hasChild suffice to capture the information extracted by the neural network, our
approach is not limited to these predicates and can be extended by adding additional

predicates (e.g., happens before).

2.5 Implementation

Data Collection and Preparation We collect 20,640 pages from Stackoverflow [100]
using the search keywords ”tidyr” and "dplyr” (with testing benchmarks excluded), where
each page contains a single question and multiple solutions. By removing duplicate
contents and questions with no solutions, we obtain 16,459 question-solution pairs. Each
question is pre-processed by a standard NLP pipeline that includes: stop word removal,
lemmatization and tokenization, and a solution is represented as a sequence of DSL
constructs (i.e., function names). The question-solution pairs are then used to train a
seq2seq model. For the association rules mining, we extract descriptions from answers
and their corresponding solutions and totally obtain 37,748 transactions as the input
to the Apriori algorithm. To ensure the validity of our experiments, we remove all the

benchmarks from the collected data.
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Neural Network and Hybrid Architecture We build a seq2seq neural network
using the PyTorch framework [81]. The hyper parameters (e.g., numbers of dimensions
of the word/function embedding layer and LSTM hidden layer) are obtained through
a simple grid search. For the seq2seq model in MARS, we set both the dimensions of
word /function embedding layer and LSTM hidden layer to be 256, where the embedding
layer maps 25,004 words and 14 functiong’|to vectors of the dimension 256. Furthermore,
a single layer perceptron is connected to the hidden layer of each output time step in the
decoder, mapping from a dimension of 512§]to 14, which is used to predict the probability
of each function given the previous hidden state and the current input.

As for the association rule mining, we apply the Efficient-Apriori [41] package to
discover useful association rules that can be further applied to refine the original ranking
generated by the seq2seq model. We then select valid rules according to the following

criteria:
e confidence > 0.9 or support > 0.003.

e Each wvalid rule should have at least 1 word and 1 function. And the number of

functions in the rules shall not exceed 2.

e BFach walid rule should not contain any stop words, which builds upon the En-
glish stop words and includes additional words and functions that we consider less

indicative.

By filtering out less relevant rules, we obtain 187 association rules.

4There are 25,000 natural language words in the word vocabulary and 10 functions in the function
vocabulary. Each vocabulary contains 4 special helper tokens, namely namely ”<PAD>" (empty place-
holder), ”<SOS>" and "<EOS>” (the start and end of a sequence), ”<UKN>" (out-of-vocabulary
word).

5Since we are using separate seq2seq structures for title and question, the concatenation of the hidden
layers from both are of a dimension of 256*2=512.
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Machine Configuration We train our seq2seq model on a machine from Google Cloud
Platform with a 2.20GHz Intel Xeon CPU and an NVIDIA Tesla K80 GPU. All synthesis
tasks were run on a laptop equipped with Intel Core i5 CPU and 16GB memory. Since
the MORPHEUS tool is only available on a virtual machine [46], we used this virtual
machine to run all program synthesis experiments. It took around 8 hours to train our

hybrid model.

2.6 Evaluation

We evaluated MARS by conducting experiments that are designed to answer the

following questions:

e Q1: Do our multi-layer specification and neural architecture suggest candidates

that are close to the user intent?

e (Q2: What is the impact of the neural architecture in MARS on the performance of

a state-of-the-art synthesizer for data wrangling tasks?

e (Q3: How is the performance of MARS affected by the quality of the corpus?

2.6.1 Quality of suggested candidates

To evaluate the benefit of the multi-layer specification and neural architecture in
MARS, we instantiate the tool to the data wrangling domain, where data scientists tend
to spend about 80% of their time doing tedious and repetitive tasks. In particular,
we use the data in to train the n-gram model from MORPHEUS [43], the
seq2seq model discussed in [Section 2.3.1] and the hybrid neural architecture described in
Since the output of each model is a distribution of symbolic programs, we run

all three models on the original benchmarks from MORPHEUS, which contains 80 data
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wrangling tasks using two popular R libraries, namely, tidyr and dplyr. In particular,
the data wrangling DSL contains 60 production rules and can induce a gigantic search
space of the symbolic programs, posing a challenge for state-of-the-art synthesizers. As
shown in MORPHEUS’ user study, data scientists solved on average two benchmarks in one
hour. For each benchmark, we then use the seq2seq model and hybrid neural architecture
to enumerate symbolic programs and record the ranking of the correct candidate that
matches the user intent. Finally, we manually checked all solutions synthesized by MARS
and made sure that they are semantically equivalent to the reference solutions. Because
the n-gram model in MORPHEUS only considers programs in the posts on StackOverflow

and ignore user description, it provides a global ranking shared by all benchmarks.

Results As shown in [Table 2.1 the average ranking and standard deviation of the
n-gram model are 42 and 70, respectively. In other words, a synthesizer would need to
explore 42 symbolic programs on average. Recall that a symbolic program may corre-
spond to several thousands concrete programs. The standard deviation is used to quantify
stability of the model. In contrast, by incorporating the user descriptions, the seq2seq
model achieves an average ranking of 25 and a standard deviation of 39. Finally, with
the help of the association rules, the hybrid model obtains the best performance with an
average ranking of 18 and a standard deviation of 26. The result shows that our hybrid
model not only suggests candidates that are close to user intent (i.e., low average), and
it is also more stable (i.e., low standard deviation) across different benchmarks.

We further look into the number of top-1 and top-3 candidates that are correctly
suggested by each model. As shown in [Table 2.2 without user descriptions, the n-gram
model fails to predict any correct candidates in top-1 and only suggests correct candidates
in top-3 for two benchmarks. By leveraging user descriptions, the seq2seq model is able

to figure out the right top-1 and top-3 candidates for 8 and 18 benchmarks, respectively.
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Table 2.1: Statistics for different model rankings

model n-gram seq2seq hybrid

average 42 25 18
std.t 70 39 26

I standard deviation.
" computed based on the rankings of the
correct solutions.

Table 2.2: Counts of top-1s and top-3s in different models

model n-gram seq2seq hybrid

Top-1 total” 0 8 11
Top-3 total” 2 18 29

* computed based on the rankings of the cor-
rect solutions.

Finally, our hybrid model successfully suggests top-1 and top-3 candidates for 11 and 29

benchmarks.

2.6.2 Effectiveness of hybrid neural architecture

In this section, we further investigate the impact of a better ranking on the end-to-
end performance of a synthesizer. Specifically, we integrate the previous three statistical

models into MORPHEUS, a state-of-the-art synthesizer for data wrangling tasks.

Table 2.3: Statistics of running time

model avg. speedup' #timeouts*

ngram 1x 11
seq2seq 6x 8
hybrid 15x 2

L average speedup on challenging solved bench-
marks.
" number of timeouts on all benchmarks.
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Figure 2.7: Comparison of run times (in seconds) between n-gram (x-axis, used in
MORPHEUS) and seq2seq (y-axis, used in MARS) using a logarithmic scale.

Results |Figure 2.7] and |[Figure 2.8 show the results of running MORPHEUS on its orig-

inal 80 benchmarks with three different models (namely n-gram model in original MOR-
PHEUS and seq2seq/hybrid model in MARS) and a time limit of 300 seconds. In partic-
ular, each dot in the figure represents the pairwise running time of a specific benchmark
under different models. As a result, the dots near the diagonal indicates that the per-
formance of two models is similar on those benchmarks. For instance, shows
the comparison between the n-gram model and our hybrid model in terms of running
time. Specifically, our hybrid model outperforms MORPHEUS’ original n-gram model in
58 of 80 benchmarks. In the meantime, MORPHEUS times out on 11 benchmarks with
the n-gram model, whereas it only times out on 2 benchmarks with our hybrid model.
The performance of the seq2seq model is between the above two models by outperform-
ing MORPHEUS n-gram model in 47 of 80 benchmarks and timing out on 8 benchmarks.
shows the average speedup for challenging benchmarks (i.e. > 3 library calls)
with respect to the n-gram model for benchmarks that can be solved by both models.
On average, the seq2seq model is 6x faster than the n-gram model and the hybrid model

is 15x faster than the n-gram model. The result further confirms that a statistical model
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Figure 2.8: Comparison of run times (in seconds) between n-gram (x-axis, used in

MORPHEUS) and hybrid (y-axis, used in MARS) using a logarithmic scale.

that accurately captures user intent tends to have a better performance in running time.

Remarks To understand the cases where our technique runs significantly faster, we
manually look into some of the benchmarks. We notice that our technique performs
especially well if the user states her problem in a clear way. For instance, in this post
from StackOverflow, E] although the user does not know the exact solution for her complex
task, she is still able to convey the transformations using keywords (e.g., “count” and
“unique”) and partial code snippets. Even with these discrete signals, our hybrid model

manages to guide MORPHEUS to the correct program in less than a second:

1 TBL_7 = filter(p25_inputl, "b">1)
2 TBL_3 = unite(TBL_7, key_ab, "a", "b")
3 TBL_1 = group_by(TBL_3, "key_ab")

4 morpheus = summarise(TBL_1, e=n())

In contrast, MORPHEUS with its original n-gram model takes several minutes to find the

right candidate.

Shttps://stackoverflow.com/questions/33549927
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2.6.3 Discussion

Like any other technique, our approach also has its own limitations. For instance, in
Figure 2.8| there are still some benchmarks where n-gram performs better, we manually

inspect all these cases and notice that the issue is caused by the following reasons:

Insufficient Text In this post, [Z] the user only provides input-output examples but
her description barely contains any useful signals that allow our hybrid model to make a

good prediction.

Contextual Text In this post, Ff] the user explicitly states that she does not want to

use the mutate function:

“... I can solve my problem using dplyr’s mutate but it’s a time-intensive,

roundabout way to achieve my goal. ...”

However, after tokenizing the natural description and removing all the stop words (e.g.,
“but”), our hybrid model loses the contextual information and takes mutate as the key-

word.

Misleading Text In contrast to the previous example, in this post, )| the user explicitly
wants to use the mutate function:

“... I want to use mutate to make variable d which is mean of a,b and c.

77

However, since we directly adopt the DSL from MORPHEUS and the DSL does not support
this special usage of mutate, our hybrid model proposes candidates that do not lead to

the correct solution.

"https://stackoverflow.com/questions/26733449
Shttps://stackoverflow.com/questions/29447325
Yhttps://stackoverflow.com/questions/33401788
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2.6.4 Threats to Validity

Corpus Quality Even though the hybrid neural architecture is more resilient to the
limitation of the existing data set, the performance of MARS is still sensitive to the
quality of the training data. To mitigate this concern, we train our statistical model
using all relevant posts from StackOverflow. In the future, we also plan to leverage
transfer learning to incorporate resources written in other languages (e.g., Python and

Matlab).

Benchmark Selection Due to the expressiveness of the DSL, in terms of complexity,
the benchmarks from MORPHEUS [43] may not represent the actual distribution of the
questions on StackOverflow. While the comparison on the MORPHEUS benchmarks may
not completely unveil the benefit of our hybrid neural architecture, and a representative
test suite may provide a more comprehensive view, we believe our comparison is sufficient
to show the strength of our technique. Furthermore, since both our neural architecture
and the enumerator are designed in domain-agnostic way, we also believe our technique

can generalize to other domains.

2.7 Summary

In this chapter, we proposed MARS, a novel synthesis framework that takes as input
a multi-layer specification which combines input-output examples, textual description,
and partial code snippets to capture the user intent. To solve a multi-layer specification
synthesis (MSS) problem, MARS encodes input-output examples as hard constraints and
denotes additional preferences (e.g., textual description, partial code snippet, etc) as soft
constraints. The MSS problem is reduced to a Max-SMT formula which can be solved by

an off-the-self solver [37, [16]. To accurately capture user intent from noisy and ambiguous
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descriptions, we propose a novel hybrid neural architecture that combines the power of a
sequence-to-sequence model and the apriori algorithm for mining association rules. We
instantiate our hybrid model to the data wrangling domain and compare its performance
against MORPHEUS on its original 80 benchmarks. Our results show that our approach

outperforms MORPHEUS and it is on average 15x faster for challenging benchmarks.
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Chapter 3

CONCORD: Program Synthesis Using
Deduction-Guided Reinforcement

Learning

Due to its potential to significantly improve both programmer productivity and soft-
ware correctness, automated program synthesis has gained enormous popularity over the
last decade. Given a high-level specification of user intent, most modern synthesizers
perform some form of backtracking search in order to find a program that satisfies the
specification. However, due to the enormous size of the search space, synthesizers ad-
ditionally use at least one of two other techniques, namely deduction and statistical
reasoning, to make this approach practical. For example, many recent synthesis tech-
niques use lightweight program analysis or logical reasoning to significantly prune the
search space [45] [109] [43], 85]. On the other hand, several recent approaches utilize a sta-
tistical model (trained off-line) to bias the search towards programs that are more likely
to satisfy the specification [0l [43] 12 20]. While both deductive and statistical reasoning
have been shown to dramatically improve synthesis efficiency, a key limitation of existing
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Figure 3.1: Overview of our synthesis algorithm

approaches is that they do not tightly combine these two modes of reasoning. In par-
ticular, although logical reasoning often provides very useful feedback at synthesis time,
existing synthesis algorithms do not leverage such feedback to improve their statistical
model.

We propose a new synthesis algorithm that meaningfully combines deductive and
statistical reasoning. Similar to prior techniques, our approach starts with a statistical
model (henceforth called a policy) that is trained off-line on a representative set of training
problems and uses this policy to guide search. However, unlike prior techniques, our
method updates this policy on-line at synthesis time and gradually improves the policy
by incorporating feedback from a deduction engine.

To achieve this tight coupling between deductive and statistical reasoning, we for-
mulate syntax-guided synthesis as a reinforcement learning (RL) problem. Specifically,
given a context-free grammar for the underlying DSL, we think of partial (i.e., incom-
plete) programs in this DSL as states in a Markov Decision Process (MDP) and actions
as grammar productions. Thus, a policy of this MDP specifies how a partial program
should be extended to obtain a more specific program. Then, the goal of our reinforce-
ment learning problem is to improve this policy over time as some partial programs are
proven infeasible by an underlying deduction engine.

While the framework of reinforcement learning is a good fit for our problem, standard

RL algorithms (e.g., policy gradient) typically update the policy based on feedback re-
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ceived from states that have already been explored. However, in the context of program
synthesis, deductive reasoning can also provide feedback about states that have not been
explored. For example, given a partial program that is infeasible, one can analyze the
root cause of failure to infer other infeasible programs [45, 110]. To deal with this dif-
ficulty, we propose an off-policy reinforcement learning algorithm that can improve the
policy based on such additional feedback from the deduction engine.

As shown schematically in [Figure 3.1] our synthesis algorithm consists of three con-
ceptual elements, indicated as “Take action”, “Deduce”, and “Update policy”. Given
the current policy 7 and partial program P, “Take action” uses 7w to expand P into a
more complete program P’. Then, “Deduce” employs existing deductive reasoning tech-
niques (e.g., NEO [45], TRINITY [69]) to check whether P’ is feasible with respect to the
specification. If this is not the case, “Update policy” uses the feedback provided by the
deduction engine to improve 7. Specifically, the policy is updated using an off-policy
variant of the policy gradient algorithm, where the gradient computation is adapted to
our unique setting.

We have implemented the proposed method in a new synthesis tool called CONCORD
and empirically evaluate it on synthesis tasks used in prior work [45] [6]. We also compare
our method with several relevant baselines as well as two existing synthesis tools. Notably,
our evaluation shows that CONCORD can solve 15% more benchmarks compared to NEO
(a state-of-the-art synthesis tool), while being 8.71x faster on benchmarks that can
be solved by both tools. Furthermore, our ablation study demonstrates the empirical
benefits of our proposed reinforcement learning algorithm.

To summarize, this chapter focuses on the following key contributions:

e We propose a new synthesis algorithm based on reinforcement learning that tightly

couples statistical and deductive reasoning.
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e We describe an off-policy reinforcement learning technique that uses the output of

the deduction engine to gradually improve its policy.

e We implement our approach in a tool called CONCORD and empirically demonstrate
its benefits compared to other state-of-the-art tools as well as ablations of our own

system.

The rest of this chapter is structured as follows. First, we provide some backgound on
reinforcement learning and MDPs ([Section 3.1)) and introduce our problem formulation
in [Section 3.2 After formulating the synthesis problem as an MDP in we

then present our synthesis algorithm in [Section 3.4} [Section 3.5 and [Section 3.6|describe

our implementation and evaluation respectively.

3.1 Background on Reinforcement Learning

At a high level, the goal of reinforcement learning (RL) is to train an agent, such
as a robot, to make a sequence of decisions (e.g., move up/down/left/right) in order
to accomplish a task. All relevant information about the environment and the task is
specified as a Markov decision process (MDP). Given an MDP, the goal is to compute a
policy that specifies how the agent should act in each state to maximize their chances of
accomplishing the task.

In the remainder of this section, we provide background on MDPs and describe the

policy gradient algorithm that our method will build upon.

Markov Decision Process We formalize a Markov decision process (MDP) as a tuple

M= (S,5,S8r, A, F,R), where:

e S is a set of states (e.g., the robot’s current position),
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e S; is the initial state distribution,

Sr is a set of the final states (e.g., a dead end),

A is a set of actions (e.g., move up/down/left/right),

F:Sx A— Sis aset of transitions,

R : S — R is a reward function that assigns a reward to each state (e.g., 1 for

reaching the goal and 0 otherwise).

In general, transitions in an MDP can be stochastic; however, for our setting, we only

consider deterministic transitions and rewards.

Policy A policy for an MDP specifies how the agent should act in each state. Specifi-
cally, we consider a (stochastic) policy 7 : S x A — R, where 7(S, A) is the probability
of taking action A in state S. Alternatively, we can also think of 7 as a mapping from
states to distributions over actions. Thus, we write A ~ 7(S) to denote that action A is

sampled from the distribution for state s.

Rollout Given an MDP M and policy 7, a rollout is a sequence of state-action-reward
tuples obtained by sampling an initial state and then using 7 to make decisions until a

final state is reached. More formally, for a rollout of the form:

C = ((Sb Ala R1)7 sy (Sm—la Am—la Rm—l); (Sm7 g, Rm))a

we have S,, € Sy, S1 ~ S (i.e., Sy is sampled from an initial state), and, for each

i€{l,...,m—1}, A ~(S;), Ry = R(S:), and Si1 = F(Si, Ai).
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In general, a policy 7 induces a distribution D, over the rollouts of an MDP M.

Since we assume that MDP transitions are deterministic, we have:
m—1
Dr(C) = H (S, Ai)-

=1

RL Problem Given an MDP M, the goal of reinforcement learning is to compute an

optimal policy 7 for M. More formally, 7* should maximize cumulative expected reward:
7 = argmax J(m)

™

where the cumulative expected reward J(m) is computed as follows:

J(m) = E¢op,

=1

Policy Gradient Algorithm The policy gradient algorithm is a well-known RL al-
gorithm for finding optimal policies. It assumes a parametric policy family 7y with
parameters § € RY. For example, Ty may be a deep neural network (DNN), where
denotes the parameters of the DNN. At a high level, the policy gradient algorithm uses

the following theorem to optimize .J(my) [102]:

Theorem 3.1.1. We have

Vo J(mp) = E¢cop,, [€(C)] where ((() = 2 ( Z Rj) Vo log my(S;, A;). (3.1)

i=1 \j=i+1

In this theorem, the term Vylog my(.S;, A;) intuitively gives a direction in the param-
eter space that, when moving the policy parameters towards it, increases the probability

of taking action A; at state S;. Also, the sum R; is the total future reward after

m

j=i+1

taking action A; . Thus, ¢(¢) is just the sum of different directions in the parameter
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space weighted by their corresponding future reward. Thus, the gradient Vy.J(my) moves
policy parameters in a direction that increases the probability of taking actions that lead
to higher rewards.

Based on this theorem, we can estimate the gradient Vy.J(my) using rollouts sampled

from D,,:
n

Vo (1) & % Se(c®, (3.2)

k=1

where () ~ D, for each k € {1,...,n}. The policy gradient algorithm uses stochastic

gradient ascent in conjunction with [Equation (3.2)|to maximize .J(my) [102].

3.2 Problem Formulation

We focus on the setting of syntax-guided synthesis [4]. Specifically, given a domain-
specific language (DSL) L and a specification ¢, our goal is to find a program in L that
satisfies ¢. In the remainder of this section, we formally define our synthesis problem

and clarify our assumptions.

DSL We assume a domain-specific language L specified as a context-free grammar
L= (V,%X,R,S), where V, ¥ denote non-terminals and terminals respectively, R is a set

of productions, and S is the start symbol.

Definition 3.2.1. (Partial Program) A partial program P is a sequence P € (X UV)*
such that S = P (i.e., P can be derived from S via a sequence of productions). We refer
to any non-terminal in P as a hole, and we say that P is complete if it does not contain

any holes.

Given a partial program P containing a hole H, we can fill this hole by replacing
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| L
;| take(L, N) | drop(L, N) | sort(L)
reverse(L) | add(L, L) | sub(L, L) | sumUpTo(L)
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Figure 3.2: A simple programming language used for illustration. Here, take (resp.
drop) keeps (resp. removes) the first N elements in the input list. Also, add (resp.
sub) compute a new list by adding (resp. subtracting) elements from the two lists
pair-wise. Finally, sumUpTo generates a new list where the ¢’th element in the output
list is the sum of all previous elements (including the i’th element) in the input list.

H with the right-hand-side of any grammar production r of the form H — e. We use
the notation P = P’ to indicate that P’ is the partial program obtained by replacing
the first occurrence of H with the right-hand-side of r, and we write FILL(P,r) = P’

whenever P = P'.

Example 3.2.1. Consider the small programming language shown in for
manipulating lists of integers. The following partial program P over this DSL contains

three holes, namely Ly, Lo, Ny:

add(L;, take(Lo, Ny))

Now, consider the production r = L — reverse(L). In this case, FILL(P,r) yields the

following partial program P’

add(reverse(L;), take(Ls, N7))

Program Synthesis Problem Given a specification ¢ and language L = (V, %, R, S),
the goal of program synthesis is to find a complete program P such that S = P and P
satisfies ¢. We use the notation P |= ¢ to indicate that P is a complete program that

satisfies specification ¢.
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Deduction Engine In the remainder of this chapter, we assume access to a deduction
engine that can determine whether a partial program P is feasible with respect to spec-

ification ¢. To make this more precise, we introduce the following notion of feasibility.

Definition 3.2.2. (Feasible Partial Program) Given a specification ¢ and language
L = (V,X,R,S), a partial program P is said to be feasible with respect to ¢ if there

exists any complete program P’ such that P = P’ and P’ = ¢.

In other words, a feasible partial program can be refined into a complete program
that satisfies the specification. We assume that our deduction oracle over-approximates
feasibility. That is, if P is feasible with respect to specification ¢, then DEDUCE(P, ¢)
should report that P is feasible but not necessarily vice versa. Note that almost all de-
duction techniques used in the program synthesis literature satisfy this assumption [109]

45, 58, 47, 43, 47).

Example 3.2.2. Consider again the DSL from and the specification ¢ defined

by the following input-output example:

(65,2, 73,62, 78] — [143, 129, 213, 204, 345]

The partial program add(reverse(z), take(z, N)) is infeasible because, no matter what
production we use to fill non-terminal N, the resulting program cannot satisfy the pro-

vided specification for the following reason:

e Given a list [ and integer n where n < length(l), take(l,n) returns the first n

elements in [. Thus, the length of take(l,n) is smaller than that of [.

e The construct reverse(l) reverses its input; thus, the size of the output list is the

same as its input.
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e Finally, add(ly,ls) constructs a new list by adding the elements of its input lists

pair-wise. Thus, add expects the two input lists to be the same size.

e Since the outputs of reverse and take do not have the same size, we cannot

combine them using add.

Several techniques from prior work (e.g., [43] 45| 109, [85]) can prove the infeasibility of
such partial programs by using an SMT solver (provided specifications are given for the

DSL constructs).

Beyond checking feasibility, some deduction techniques used for synthesis can also
provide additional information [45] 110} 69]. In particular, given a partial program P
that is infeasible with respect to specification ¢, several deduction engines can generate a
set of other infeasible partial programs P, ..., P, that are infeasible for the same reason
as P. To unify both types of feedback, we assume that the output of the deduction oracle
O is a set S of partial programs such that S is empty if and only if O decides that the
partial program is feasible.

This discussion is summarized by the following definition:

Definition 3.2.3. (Deduction Engine) Given a partial program P and specification
¢, DEDUCE(P, ¢) yields a set of partial programs S such that (1) if S # &, then P is

infeasible, and (2) for every P’ € S, it must be the case that P’ is infeasible with respect
to ¢.

Example 3.2.3. Consider again the same infeasible partial program P given in
ple 3.2.2| Since drop(l,n) drops the first n elements from list [ (where n < length(l)), it

also produces a list whose length is smaller than that of the input. Thus, the following

partial program P’ is also infeasible for the same reason as P:

P' = add(reverse(z),drop(z, N))
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Thus, DEDUCE(P, ¢) may return the set {P, P'}.

3.3 MDP Formulation of Deduction-Guided Program
Synthesis

Given a specification ¢ and language L = (V, X, R, S), we can formulate the program

synthesis problem as an MDP My = (S, S, Sr, A, F, R), where:

e States S include all partial programs P such that S = P as well as a special label

L indicating a syntactically ill-formed partial program

S; places all probability mass on the empty program S, i.e.,

1 fP=S
SI(P):
0 ifP#S

St includes complete programs as well as infeasible partial programs, i.e.,

P e Sy < IsCOMPLETE(P) V DEDUCE(P,¢) # @V P =1

Actions A are exactly the productions R for the DSL

Transitions F correspond to filling a hole using some production i.e.,

1 if H is not a hole in P
F(P, r=(H —e¢)=
FiLL(P,r)  otherwise

The reward function penalizes infeasible programs and rewards correct solutions,
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ie.,
1 itPEG
R(P)=14{ -1 if P=_1 Vv DEDUCE(P,¢) # @V (ISCOMPLETE(P) A P £ ¢)
0 otherwis

Observe that our reward function encodes the goal of synthesizing a complete program
P that satisfies ¢, while avoiding the exploration of as many infeasible programs as
possible. Thus, if we have a good policy 7 for this MDP, then a rollout of 7 is likely to

correspond to a solution of the given synthesis problem.

Example 3.3.1. Consider the same specification (i.e., input-output example) ¢ from

[Example 3.2.2] and the DSL from [Example 3.2.11 The partial program

P = add(reverse(x), take(z, N))

is a terminal state of M, since DEDUCE(P, ¢) yields a non-empty set, and we have

R(P) = —1. Thus, the following sequence corresponds to a rollout of M :

(5,8 — L,0), (L,L — add(L, L),0), (add(Ly, L), L — reverse(L),0)
(add(reverse(L;), Ly), L — x,0), (add(reverse(z), L), L — take(L, N),0)

(add(reverse(z), take(L, N)), L — z,0), (add(reverse(z), take(x, N)),d, —1).

Simplified Policy Gradient Estimation for M, Since our synthesis algorithm will

be based on policy gradient, we will now derive a simplified policy gradient for our MDP

!'Note that the rewards are usually tailored and optimized to fit different real-world scenarios. For
example, small positive rewards can be assigned to (feasible) intermediate states to stabilize the learning
process as well as preventing policy divergence.
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M. First, by construction of My, a rollout ¢ has the form

(Plarlvo)a ceey (Pma ®7Q)

where ¢ = 1 if P, |= ¢ and ¢ = —1 otherwise. Thus, the term ¢(P) from [Equation (3.1)|

can be simplified as follows:

m—1

((Pn) =Y q-Vologm(P;,r;), (3.3)

i=1

where P, ~ D,, is a final state (i.e., complete program or infeasible partial program)

sampled using mp. Then, [Equation (3.1) is equivalently

V() ~ %ie(zﬂﬂ), (3.4)
k=1

where P*) ~ D, for each k € {1,...,n}.

3.4 RL-Based Synthesis Algorithm

In this section, we describe our synthesis algorithm based on reinforcement learning.
Our method is an off-policy variant of the standard (on-policy) policy gradient algorithm
and incorporates additional feedback — in the form of other infeasible programs — provided
by the deduction engine when improving its policy parameters. We first give a high-level

overview of the synthesis algorithm and then explain how to update the policy.
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Algorithm 2 Deduction-Guided Reinforcement Learning for Program Synthesis
1: procedure SYNTHESIZE(L, ¢, ()

2 input: Domain-specific language L = (V, %, R, 5)
3 input: Specification ¢; initial policy

4 output: Complete program P such that P |= ¢
5: e < To
6

7

8

9

while true do
(P,C) + GETROLLOUT(L, ¢, mp)
if C = @ then return P
else my + UpPDATEPOLICY(7y,C)

10: procedure GETROLLOUT(L, ¢, mp)

11: P+ S

12: while true do

13: C < DEDUCE(P, ¢)

14: if C # @ then return (P,C)

15: choose r ~ my(P) A Lus(r) € HOLES(P)
16: P+ FiLL(P,r)

17: if ISCOMPLETE(P) then

18: if P = ¢ then return (P, 9)

19: else return (P, {P})

20: procedure UPDATEPOLICY (g, C)
21: for k' € {1,...,n'} do

22: P*) ~ Uniform(C)

n / D (P(kl))
23: 0 < 0+n> n_ ((P*). — e
24: return my

3.4.1 Overview of Synthesis Algorithm

Our RIL-based synthesis algorithm is presented in [Algorithm 2] In addition to spec-
ification ¢ and domain-specific language L, this algorithm also takes as input an initial
policy 7 that has been trained off-line on a representative set of training problemsﬂ. In
each iteration of the main synthesis loop, we first obtain a rollout of the current policy

by calling the GETROLLOUT procedure at line 7. Here, each rollout either corresponds

2We explain how to train this initial policy in
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to a complete program P or an infeasible partial program. If P is complete and satis-
fies the specification, we return it as a solution in line 8. Otherwise, we use feedback C
provided by the deduction engine to improve the current policy (line 9). In the follow-
ing subsections, we explain the GETROLLOUT and UPDATEPOLICY procedures in more

detail.

3.4.2 Sampling Rollouts

The GETROLLOUT procedure iteratively expands a partial program, starting from
the start symbol S of the grammar (line 11). In each iteration (lines 12-19), we first check
whether the current partial program P is feasible by calling DEDUCE. If P is infeasible
(i.e., C is non-empty), then we have reached a terminal state of the MDP; thus, we return
P as the final state of the rollout. Otherwise, we continue expanding P according to the
current policy my. Specifically, we first sample an action (i.e., grammar production) r
that is applicable to the current state (i.e., the left-hand-side of r is a hole in P), and,
then, we expand P by calling the FILL procedure (defined in at line 16.
If the resulting program is complete , we have reached a terminal state and return P;

otherwise, we continue expanding P according to the current policy.

3.4.3 Improving the Policy

As mentioned earlier, our algorithm improves the policy by using the feedback C pro-
vided by the deduction engine. Specifically, consider an infeasible program P explored by
the synthesis algorithm at line 7. Since DEDUCE(P, ¢) yields a set of infeasible programs,
for every program P’ € C, we know that the reward should be —1. As a consequence, we

should be able to incorporate the rollout used to construct P into the policy gradient esti-

mate based on [Equation (3.3)l However, the challenge to doing so is that [Equation (3.4)|
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relies on on-policy samples — i.e., the programs P*) in [Equation (3.4)| must be sampled

using the current policy my. Since P’ € C is not sampled using 7y, we cannot directly use

it in [Equation (3.4)]

Instead, we use off-policy RL to incorporate P’ into the estimate of Vy.J(mp) [59)].
Essentially, the idea is to use importance weighting to incorporate data sampled from a
different distribution than D,,. In particular, suppose we are given a distribution D over

final states. Then, we can derive the following gradient:

VQJ<7T9) = EPNDWQ [€(P)] = EPNﬁ |?(P) ==

Intuitively, the importance weight 175?_1(31)3)

accounts for the fact that P is sampled from
the “wrong” distribution.
Now, we can use the distribution D = Uniform(DEDUCE(P, ¢)) for a randomly

sampled final state P’ ~ D,,. Thus, we have: E|

Theorem 3.4.1. The policy gradient is

Dr, (P)

Vo (9) = Eprnp, prtnitorm(Devves(ra) |E(P) 1/|DEDUCE(F, ¢)| 32)
Proof. Note that
VoJ(mp) = Epiap,,[VoJ ()]
Dy, (P)
= Epip,, P~Uniform(Depvce(p.4)) | £(P) - 1/!DEDUQCE(P/ o)’
as claimed. [ .

3Technically, importance weighting requires that the support of D contains the support of
Dyr,. We can address this issue by combining D and D,,—in particular, take D(P) = (1 — ¢) -
Uniform(DEDUCE(P’, ¢))(P) + € - Dy, (P), for any € > 0.
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The corresponding estimate of VyJ(my) is given by the following equation:

11 & , D, (P*H))
Vod(0) ~ = =Y ¢(PF). o
0/ (6) n;n’k; ( ) 1/|DEDUCE(P®), ¢)|’
where P®) ~ D, and P**) ~ Uniform(DEDUCE(P®), ¢)) for each k € {1,....,n} and
kK € {1,....,n'}. Our actual implementation uses n = 1, in which case this equation can

be simplified to the following:

n/

~ L @y D (P*)
Vo (6) = k;g(}) ) 1/|DEDUCE(P, ¢)|’ (3:6)

:\

where P ~ D,, and P*) ~ Uniform(DEDUCE(P, ¢)) for each k' € {1,...,n'}.
Now, going back to our synthesis algorithm from the UpDATEPOLICY

procedure uses [Equation (3.6)| to update the policy parameters 6. Specifically, given a

set C of infeasible partial programs, we first sample n’ programs P ... P™) from C
uniformly at random (line 22). Then, we use the probability of each P*) being sampled

from the current distribution D,, to update the policy parameters to a new value 6’

according to [Equation (3.6)|

Example 3.4.1. Suppose that the current policy assigns the following probabilities to

these state, action pairs:

mo((add(reverse(x), L)), L — take(L, N)) = 0.3,
mo((add(reverse(x), L)), L — drop(L, N)) = 0.3,

mp((add(reverse(x), L)), L — sumUpTo(L)) = 0.1.
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Furthermore, suppose that we sample the following rollout using this policy:

P = add(reverse(z), take(z, N)).

This corresponds to an infeasible partial program, and, as in Example 3, DEDUCE(P,¢)

yields {P, P’} where P’ = add(reverse(x),drop(z, N)). Using the gradients derived by

[Equation (3.6), we update the policy parameters 6 to #'. The updated policy now assigns

the following probabilities to the same state, action pairs:

7o ((add(reverse(z), L)), L — take(L, N)) = 0.15,
7o ((add(reverse(z), L)), L — drop(L, N)) = 0.15,

7o ((add(reverse(z), L)), L — sumUpTo(L)) = 0.2.

Observe that the updated policy makes it less likely that we will expand the partial pro-
gram add(reverse(x), L)) using the drop production in addition to the take production.
Thus, if we reach the same state add(reverse(z), L) during rollout sampling in the next
iteration, the policy will make it more likely to explore the sumUpTo production, which

does occur in the desired program
add(reverse(z), sumUpTo(z))

that meets the specification from Example 2.

3.5 Implementation

We have implemented the proposed algorithm in a new tool called CONCORD written

in Python. In what follows, we elaborate on various aspects of our implementation.
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3.5.1 Deduction Engine

CONCORD uses the same deduction engine described by NEO [45]. Specifically, given
a partial program P, CONCORD first generates a specification ¢ of P by leveraging the
abstract semantics of each DSL construct. Then, CONCORD issues a satisfiability query
to the Z3 SMT solver [37] to check whether ¢ is consistent with the provided specification.
If it is not, this means that P is infeasible, and CONCORD proceeds to infer other partial
programs that are also infeasible for the same reason as P. To do so, CONCORD first
obtains an unsatisfiable core v for the queried formula, and, for each clause ¢; of v
originating from DSL construct f;, it identifies a set S; of other DSL constructs whose
semantics imply ¢;. Finally, it generates a set of other infeasible programs by replacing all

fi’s in the current program with another construct drawn from its corresponding set S;.

3.5.2 Policy Network

Architecture Asshown by[Figure 3.3, CONCORD represents its underlying policy using
a deep neural network (DNN) my(r | P), which takes as input the current state (i.e., a
partial program P) and outputs a probability distribution over actions (i.e., productions
r in the DSL). We represent each program P as a flat sequence of statements and use
a recurrent neural network (RNN) architecture, as this is a natural choice for sequence
inputs. In particular, our policy network is a gated recurrent unit (GRU) network [33],
which is a state-of-the-art RNN architecture. Our policy network has one hidden layer
with 256 neurons; this layer is sequentially applied to each statement in the partial
program together with the latent vector from processing the previous statement. Once
the entire partial program P has been encoded into a vector, my has a final layer that

outputs a distribution over DSL productions r based on this vector.
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(add(Ll,Lz)) (add(reverse(Ln,Lz) )

fill Tfill Ifill

( S - L ) (L - add(L1,Lz)> (L - reverse(L))
T T T

Spec GRU GRU GRU
Encoder (t=0) (t=1) t=2 | -

Figure 3.3: The architecture of the policy network showing how to roll out the partial
program in Example 4.

Pretraining of Initial Policy Recall from that our synthesis algorithm
takes a input an initial policy network that is updated during the synthesis process. One
way to initialize the the policy network would be to use a standard random initializa-
tion of the network weights. However, a more effective alternative is to pretrain the
policy on a benchmark suite of program synthesis problems [96]. Specifically, consider
a representative training set X ., of synthesis problems of the form (¢, P), where ¢ is
the specification and P is the desired program. To obtain an initial policy, we augment
our policy network to take as input an encoding of the specification ¢ for the current
synthesis problem — i.e., it has the form my(r | P, gb)ﬁ Then, we use supervised learning

to train my to predict P given ¢ —i.e.,

|P|—1

0" = arg max Z Z mo(ri | By, b).

0 ;
(¢7P)€Xtrain =1

We optimize 6 using stochastic-gradient descent (SGD) on this objective.
Given a new synthesis problem ¢, we use mgo as the initial policy. Our RL algorithm

then continues to update the parameters starting from 6°.

4Including the specification as an input to 7y is unnecessary if we do not use pretraining, since ¢ does
not change for a single synthesis problem.
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3.5.3 Input Featurization

As standard, we need a way to featurize the inputs to our policy network — i.e., the
statements in each partial program P, and the specification ¢. Our current implementa-
tion assumes that statements are drawn from a finite set and featurizes them by training
a different embedding vector for each kind of statement. While our general methodology
can be applied to different types specifications, our implementation featurizes the spec-
ification under the assumption that it consists of input-output examples and uses the

same methodology described by Balog et al. [6].

3.5.4 Optimizations

Our implementation performs a few optimization over the algorithm presented in
First, since it is possible to sample the same rollout multiple times, our
implementation uses a hash map to check whether a rollout has already been explored.
Second, in different invocations of the GETROLLOUT procedure from [Algorithm 2| we
may end up querying the feasibility of the same state (i.e., partial program) many times.
Since checking feasibility requires a potentially-expensive call to the SMT solver, our
implementation also memorizes the results of feasibility checks for each state. Finally,
similar to Chen et al. [25], we use a 3-model ensemble to alleviate some of the randomness
in the synthesis process and return a solution as soon as one of the models in the ensemble

finds a correct solution.

3.6 Evaluation

In this section, we describe the results from our experimental evaluation, which is

designed to answer the following key research questions:
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1. How does CONCORD compare against existing synthesis tools?

2. What is the impact of updating the statistical model during synthesis? (i.e., is

reinforcement learning actually useful)?

3. How important is the proposed off-policy RL algorithm compared to standard policy

gradient?

4. How important is it to get feedback from the deduction engine when updating the

policy?

Benchmarks We evaluate the proposed technique on a total of 100 synthesis tasks used
in prior work [0, 45]. Specifically, these synthesis tasks require performing non-trivial
transformations and computations over lists using a functional programming language.
Since these benchmarks have been used to evaluate both NEO [45] and DEEPCODER [6],
they provide a fair ground for comparing our approach against two of the most closely-
related techniques. In particular, note that DEEPCODER uses a pre-trained deep neural
network to guide its search, whereas NEO uses both statistical and logical reasoning (i.e.,
statistical model to guide search and deduction to prune the search space). However,
unlike our proposed approach, neither NEO nor DEEPCODER update their statistical

model during synthesis time.

Training Recall that our algorithm utilizes a pre-trained initial policy. To generate the
initial policy, we use the same methodology described in DeepCoder [6] and adopted in
NEo [45]. Specifically, we randomly generate both programs and inputs, and we obtain
the corresponding output by executing the program. Then, we train the DNN model
discussed in on the Google Cloud Platform with a 2.20GHz Intel Xeon CPU
and an NVIDIA Tesla K80 GPU using 16GB of memory.
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Figure 3.4: Comparison between CONCORD, NEO, and DEEPCODER

3.6.1 Comparison Against Existing Tools

To answer our first research question, we compare CONCORD against both NEO and
DeepCoder on the 100 synthesis benchmarks discussed earlier. The result of this com-
parison is shown in [Figure 3.4 which plots the number of benchmarks solved within a
given time limit for each of the three tools. As we can see from this figure, CONCORD
outperforms DEEPCODER and NEO both in terms of synthesis time as well as the num-
ber of benchmarks solved within the 5-minute time limit. In particular, CONCORD can
solve 82% of these benchmarks with an average running time of 36 seconds, whereas NEO
(resp. DEEPCODER) solves 71% (resp. 32%) with an average running time of 99 seconds
(resp. 205 seconds). Thus, we believe these results answer our first research question in

a positive way.
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3.6.2 Ablation Study

To answer our remaining research questions, we perform an ablation study in which

we compare CONCORD against three variants:

e CoONCORD-noRL: This variant does not use reinforcement learning to update its
policy during synthesis. However, it still uses the pre-trained policy to guide search,
and it also uses deduction to prune infeasible partial programs. In other words,
CONCORD-noRL is the same as the synthesis algorithm from but
it does not invoke the UPDATEPOLICY procedure to improve its policy during

synthesis.

e CoNCORD-NoDeduce: This variant uses reinforcement learning; however, it does
not incorporate feedback from the deduction engine. That is, rather than checking
feasibility of partial programs, it instead samples complete programs and uses the
percentage of passing input-output examples as the reward signal. Note that this

variant of CONCORD essentially corresponds to the technique proposed by Si et

al [96] [

e CoNncORrD-StandardPG: Recall that our algorithm uses an off-policy variant of
the standard policy gradient algorithm to incorporate additional feedback from the
deduction engine. To evaluate the benefit of our proposed approach, we created a
variant called CONCORD-StandardPG that uses the standard (i.e., on-policy) policy
gradient algorithm. In other words, CONCORD-StandardPG implements the same
synthesis algorithm from except that it uses Theorem 1 to update 6

instead of Theorem 2.

®We reimplement the RL algorithm proposed in [96] since we cannot directly compare against their
tool. Specifically, the policy network in their implementation is tailored to their problem domain.
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# solved | Delta to NEO || Avg. time (s) | Speedup over NEO
CONCORD-noRL 56 -21% 48 1.63x
CoNcoRrD-NoDeduce 65 -8% 21 3.66x
CoNCORD-StandardPG 65 -8% 27 2.88x
CONCORD 82 +15% 9 8.71x

Table 3.1: Results of ablation study comparing different variants.

The results from this evaluation are summarized in [Table 3.1 Here, the first column
labeled “# solved” shows the number of solved benchmarks, and the second column
shows percentage improvement over NEO in terms of benchmarks solved. The third
column shows average synthesis time for benchmarks that can be solved by all variants
and NEO. Finally, the last column shows speed-up in terms of synthesis time compared
to NEO.

As we can see from this table, all variants are significantly worse than CONCORD in
terms of the number of benchmarks that can be solved within a 5-minute time limit [f|
Furthermore, as we can see from the column labeled “Delta to NEO”, all of our proposed
ideas are important for improving over the state-of-the-art, as NEO outperforms all three
variants but not the full CONCORD system, which solves 15% more benchmarks compared
to NEO.

Next, looking at the third column of we see that all three variants of
CONCORD are significantly slower compared to CONCORD in terms of synthesis time.
While both CONCORD and all of its variants outperform NEO in terms of synthesis time
(for benchmarks solved by all tools), CONCORD by far achieves the greatest speed-up
over NEO.

In summary, the results from highlight that all of our proposed ideas (i.e.,

(1) improving policy at synthesis time; (2) using feedback from deduction; and (3) off-

6To understand the improvement brought by the pre-trainedd policy, we also conduct a baseline
experiment by using randomly initialized policy in CONCORD. Given the setting, CONCORD can solve
as many as 27% of the benchmarks in the given 5-minute time limit.
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policy RL) make a significant difference in practice. Thus, we conclude that the ablation

study positively answers our last three research questions.

3.7 Summary

In this chapter, we presented a new program synthesis algorithm based on reinforce-
ment learning. Given an initial policy trained off-line, our method uses this policy to
guide its search at synthesis time but also gradually improves this policy using feedback
obtained from a deductive reasoning engine. Specifically, we formulated program synthe-
sis as a reinforcement learning problem and proposed a new variant of the policy gradient
algorithm that is better suited to solve this problem. In addition, we implemented the
proposed approach in a new tool called CONCORD and evaluated it on 100 synthesis
tasks taken from prior work. Our evaluation shows that CONCORD outperforms a state-
of-the-art tool by solving 15% more benchmarks with an average speedup of 8.71x. In
addition, our ablation study highlights the advantages of our proposed reinforcement
learning algorithm.

There are several avenues for future work. First, while our approach is applicable to
different DSLs and specifications, our current implementation focuses on input-output
examples. Thus, we are interested in extending our implementation to richer types
of specifications and evaluating our method in application domains that require such
specifications. Another interesting avenue for future work is to integrate our method
with other types of deductive reasoning engines. In particular, while our deduction
method is based on SMT, it would be interesting to try other methods (e.g., based on

types or abstract interpretation) in conjunction with our proposed RL approach.
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Chapter 4

POE: Program Synthesis for Neural

Prediction Refinement

Due to the prevalence of non-trivial visualization tasks across different application do-
mains, recent years have seen a growing number of libraries that aim to automate complex
visualization tasks. Despite all these efforts, data visualization still remains a daunting
task that requires considerable expertise.

As many end-users typically lack the expertise to write complex queries in declarative
query languages such as SQL or R programs, techniques that can answer visualization
queries from natural language (NL) descriptions are more compelling. However, be-
cause natural language is inherently ambiguous, mainstream NL-based techniques try to
achieve high precision by training the system on a specific semantic parser [13] where
the question is translated to a logical form that can be executed against the visualiza-
tion to retrieve the correct denotation. Unfortunately, semantic parsers heavily rely on
supervised training data that pairs natural language questions with logical forms, but
such data is very expensive to annotate. Although recent state-of-the-arts [51] slightly
mitigate this challenge through weak supervision without explicitly annotating data with
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logical forms, their performance is far from satisfactory [51], [56] due to the quality and
quantity of the training data required to infer the hidden logical connections for deriving
the answers.

We provide an introspective program synthesis technique and its implementation in
a tool called POE, for synthesizing data visualization queries from natural language.
Our key insight is based on a synergistic integration of statistical model and logic-based
reasoning shown in [Figure 4.1] Specifically, POE starts with answers from an off-the-shelf
statistic model that is trained through weak supervision. Since such a model only relies
on pairs of question-answer instead of explicit logical programs, it significantly reduces
the effort of labeling data thus achieves better performance through a large corpus [51].
However, in the case of long-tailed queries, the statistical model may still generate wrong
answers. This is where our key insight comes from: even though the statistical model
generates a wrong answer that is derived from a sequence of hidden inference steps
represented by neural network, part of the hidden steps may still be sensible since they
are learnt from a large corpus. But we can not access the hidden inference steps from
the neural network since it is trained directly from question-answer pairs. To get an
interpretable explanation that deciphers the answer of a statistical model, we leverage
a synthesis procedure to generate programs that are consistent with the specification,
which contains a visualization query and its answer. Because the original answer may
be wrong, the generated programs may all be problematic. Here, each program can be
viewed as an explanation for the decision, which contains partial correct derivations to
the correct answer. After that, POE further turns this into an optimal synthesis problem
whose goal is to pick a candidate program and refine it into a concrete program that is
likely to be correct.

There are two caveats we need to conquer in this project. First, for each candidate

answer proposed by the statistic model, there could be multiple programs that are con-
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Answers Explanations

Abstract Synthesis —synthesis- l

<inference>

Deep Learning Model Optimal Synthesis

<repair> + <interpretation>

f ]

Specification Refined Explanation + Refined Answer

Figure 4.1: Framework overview.

sistent with the specification and generating each program is slow since it has to solve a
non-trivial synthesis problem. Second, even with a set of programs as the explanations of
the answer, we still need to define an objective function that guides the optimal synthesis
to obtain the desired solution.

To address the first caveat, we design an abstract synthesizer whose job is to generate
the most general partial programs that are consistent with the specification. Here, we
prefer partial programs that are most general because 1) they are faster to find, and 2)
they offer a compact representation of the explanation (i.e., search space). To mitigate
the second caveat, we leverage a multi-modal optimal synthesis procedure whose objec-
tive function is to encode fine-grained semantic constraints that are difficult to learn by
off-the-shelf statistical models. In particular, POE encodes 1) a novel triangle alignment
constraint that denote semantic consistency among three parties, namely, natural lan-
guage, visualizations, and candidate programs; 2) well-typed constraints that are enforced
by the semantics of the DSL.

To evaluate the effectiveness of our technique, we evaluate POE on 629 visualization
benchmarks and compare it against VISQA [50], the state-of-the-art synthesizer for vi-
sualization queries. Our experiment shows that POE outperforms VISQA by improving

the accuracy from 44% to 59%. Our ablation study clearly demonstrates the benefits of
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our abstract synthesizer and optimal synthesis using triangle alignments.

To summarize, this chapter focuses on the following key contributions:

e We identify and present a new type of program synthesis problem in visualization
question answering, where a deep learning model’s (potentially noisy) output is
used as specification to synthesize programs that explain the model’s behavior,

which is dubbed as introspective program synthesis.

e We describe an abstract program synthesis technique for quickly inducing the search

space given noisy specifications from a deep learning model’s output.

e We describe an optimal program synthesis technique for finding programs that best
match the consistency constraints implied between natural language questions and

visualizations.

e We implement our approach in an end-to-end system called POE and evaluate it on
629 visualization question answering tasks of different types. In particular, we show

that our approach improves the state-of-the-art performance from 44% to 59%.

4.1 Overview

In this section, we give an overview of our approach with the aid of a simple motivating

example.

4.1.1 A Motivating Example

Figure 4.2| (left) shows a stacked bar chart that represents the opinions for future eco-

nomic growth for different countries. Here, Alice describes her query in natural language:

“Which country’s economy will get most worse over next 12 months?”
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Figure 4.2: A motivating example on data of opinions for future economic growth for
different countries. Left: A visualization of stacked bar chart for illustrating the data
distribution; Middle: The corresponding table format of the data; Right: Example
checking semantic consistency between three parties: data, query and explanation.
Explanation#1 doesn’t fit since no keyword in the query shares similar meaning with
Improve in the data and Improve in the explanation; Explanation#2 satisfies semantic
consistency.

By reading the visualization on the length of the red bar for every country, human beings
can locate the correct answer: “Greece”; because it has the longest bar that represents the
opinion of “Worsen”, which corresponds to the keyword “most worse” from the query.
To automate data visualization tasks, weakly-supervised approaches [51] employ neu-
ral programming that mimics the above procedure by directly estimating the probability
of each potential answer extracted from the visualization. For example, a typical output

ranking (by probability) from such models would look like:
(0.78, Brazil), (0.67, Japan), (0.55, Greece), ...

where each tuple is composed by a candidate answer and its corresponding probability
estimation. Compared to approaches based on semantic parsing that require additional
labeling of intermediate logical forms, weakly-supervised approaches save the efforts of

manual labeling by skipping the logical forms and moving directly from query to answer,
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thus benefiting from a larger source of available training data. However, it becomes
non-trivial to track and fix problematic answers proposed by these models, since weakly-
supervised approaches do not utilize intermediate logical forms that give hints about the
implicit reasoning process. For example, according to the above output ranking, the
correct solution “Greece” has a lower probability than “Brazil”. However, because the
model does not generate logical forms to explain the answers, it is difficult to figure out
which one is the correct answer.

To address this, POE employs a two-staged program synthesis procedure to refine the
candidate answers immediately proposed from weakly-supervised models. First, for can-
didate answers, POE generates potential explanations (i.e., abstract programs) using an
abstract program synthesis algorithm. Then, POE tries to refine the explanations based
on information from the data and user-provided query by optimal synthesis techniques.
Finally, POE proposes the most promising candidate answer based on the newly refined

ranking.

4.1.2 Explanation Generation

To reason about the visualization, without loss of information from data, POE applies
a visualization-to-table conversion procedure similar to previous work [56] to obtain a
compact representation, as shown in (middle). To explain the candidate
answers using program synthesis, we first introduce a simple domain-specific language
(DSL) for common data wrangling tasks. As shown in [Figure 4.3 the DSL supports
a subset of relational algebra such as projection (project) and selection (select) with
aggregation (aggregate), as well as pivoting (pivot) from typical data wrangling tasks.

The abstract synthesis engine of POE can explain the candidate answers by looking

for DSL programs that generate the corresponding answers. In particular, for a given
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(Table) ::= project( (Table), (ColList) )
| select( (Table), (BoolOp), (Collnt), (ConstVal) )
| pivot( (Table), (Colint), (Collnt) )
| aggregate( (Table), (ColList), (AggrOp), (Collnt) )

(AggrOp) ::= count | min | max | sum | mean

(BoolOp) ::= <| <=|==|>=|>|!=| eqmax | eqmin

(Table) € tables, (ConstVal) € constants
(ColInt) € columns, (ColList) € columns”

Figure 4.3: Syntax of a toy DSL for data wrangling.

table T (converted from its visualization) and the proposed top-k candidate answers
Ap, Ay, ..., Ag, POE treats them as multiple programming-by-example (PBE) problems
where the input example is T and the output example is A;, one for each candidate

answer as shown below:
(T, Ay), (T, Ay), (T, Ay), ...

where Ag = “Brazil”, Ay = “Czech Rep.”, Ay = “Greece”, etc., and synthesizes their cor-
responding DSL programs. For example, for Aqg = “Brazil”, there can be multiple expla-
nations:

1 project(select(T, "%", ==, 84), ["Country"])

2 project(select(pivot (T, "opinion", "%"), "Improve", egqmax, null), ["Country"])

3 ...

and for Ay = “Greece” the explanations would look like:

1 project(select(pivot(T, "opinion", "%"), "Worsen", eqmax, null), ["Country"l)

2 ...

Instead of directly synthesizing the above concrete programs, which may not be scalable in
practice, POE synthesizes abstract programs that are consistent with their corresponding

IO examples. So the explanations for Ay = “Brazil” would look like:

1 project(select(T, ¢, ¢, ¢), ©)
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2 project(select(pivot(T, ¢, ¢), ¢, ¢, ©), ©)

3 ...

and similar to Ay = “Greece”:

1 project(select(pivot(T, ¢, ¢), ¢, ¢, ¢), ©)

2 ...

where ¢ denotes a hole in the program yet to be determined. Such an abstract program
can be further refined to concrete programs by filling up the holes. Thus, each of them
represents a broader search space of concrete programs.

Strategically, since the program

project(select(pivot(T, ¢, ¢), ©, ©, ¢), ©)

satisfies at least 2 of the examples, i.e., (T, Ag) (where Ay = “Brazil” which corresponds
to the country with the highest “Improve” opinion) and (T, As) (where Ay = “Greece”
which corresponds to the country with highest “Worsen” opinion), it’s included as one of
the potential abstract programs. Besides, POE seeks to expand the bag of such abstract

programs. For example, the following program
project(select(T, ¢, ¢, ©), ©)
also satisfies multiple examples (e.g., (T, Ag) and (T, A;) so it’s also included.

As a result, POE’s abstract synthesis procedure constructs a bag of abstract programs

that satisfy the top-k examples:

1 project(select(pivot(T, o, ©), ¢, ©, ©), o)
2 project(select(T, o, ¢, ©), ©)

3 ...

and provides it to the optimal synthesis for further refinement.
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4.1.3 Answer Refinement

Given the list of program sketches above, POE’s optimal synthesis engine fills in the
holes by combination of type-directed synthesis and multi-modal information from the
original data and query. In particular, POE infers constraints from the original data and
query and encode them as objectives that guide the optimal synthesis procedure.

Note that the query from the user has two keywords highlighted automaticallyﬂ ie.,
“country” and “most worse”. POE composes constraints from different guiding principles
in practice. For example, semantic consistency should be maintained among three parties,
namely data, query and explanation, which we denote by triangle alignment. In particular
for the keyword “country” in the query, triangle alignment produces constraints that
ensure the existence of table contents that have similar meanings with “country”, as well
as existence of similar DSL constructs in the explanation programs.

Figure 4.2| (right) depicts the meaning of semantic consistency via triangle alignment.
For a concrete program refined from the bag of abstract programs such as:

project(select(pivot(T, "opinion", "%"), "Improve", egmax, null), ["Country"])

we can find Country as an argument provided to project and “Country” as a column
name in the original table. However, the semantic consistency for “most worse” is broken
since we cannot find any language construct in the program that is similar to it, even
though “Worsen” as an opinion in the original table builds up the similarity connection
between the data and the query. If we switch the language construct that causes the
inconsistency from “Improve” to “Worsen”, the resulting program:

project(select(pivot(T, "opinion", "%"), "Worsen", eqmax, null), ["Country"])

now satisfies the semantic consistency, where Worsen from the program now connects with

“Worsen” in the query and Worsen in the data. Actually, this turns out to be the exact

'Keyword discovery can be approached by a template-based method or by data-driven methods (e.g.,
TFIDF weighting).
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program that best executes the user intent and generates the desired answer “Greece”.
Besides triangle alignment, POE also encodes other guiding principles as soft con-

straints into an optimal synthesis problem and generates a ranking list of preferences of

concrete programs in accordance to how well they fit into different constraints. Eventu-

ally, POE executes the top-ranked program and returns the refined answer.

4.2 Preliminaries and Problem Statement

In this section, we first provide some background that will be used throughout the
chapter. After that, we describe the architecture of our introspective synthesis algorithm
and explain each of its components in detail. However, because both the abstract syn-

thesis and optimal refinement are the main focus of this chapter, we defer a detailed

discussion to and [Section 4.4 respectively.

4.2.1 Preliminaries

DSL We assume a domain-specific language L specified as a context-free grammar
L= (V,X,R,S), where V| ¥ denote non-terminals and terminals respectively, R is a set

of productions, and S is the start symbol.

Partial Program A partial program (or abstract program) P is a sequence P € (NUV)*
such that S = P (i.e., P can be derived from S via a sequence of productions). We refer
to any non-terminal in P as a hole ¢, and we say that P is complete if it does not contain
any holes.

Given a partial program P containing a hole ¢, we can fill this hole by replacing ¢

with the right-hand-side of any grammar production r of the form ¢ — e. We use the
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notation P = P’ to indicate that P’ is the partial progra obtained by replacing the
first occurrence of ¢ with the right-hand-side of r, and we write FILL(P,r) = P’ whenever

P=P.

Example 4.2.1. Consider the following partial program P:

project(o, ©)

and production r = ¢ — select(¢,9,¢,¢). In this case, FILL(P,r) yields the following
partial program P’

project(select(o, ¢, ©, ©), ©)

Deduction Engine Motivated by prior work [43], 45 28] in deductive synthesis, we
assume access to a deduction engine that can determine whether a partial program P
is feasible with respect to specification ¢. To make this more precise, we introduce the

following notion of feasibility.

Definition 4.2.1. (Feasible Partial Program) Given a specification ¢ and language
L = (V,X,R,S), a partial program P is said to be feasible with respect to ¢ if there

exists any complete program P’ such that P = P’ and P’ = ¢.

In other words, a feasible partial program can be refined into a complete program
that satisfies the specification. We assume that our deduction engine over-approximates
feasibility through abstract semantics. That is, if P is feasible with respect to specification
¢, then the feasibility check should report that P is feasible but not necessarily vice versa.
Note that almost all deduction techniques used in the program synthesis literature satisfy

this assumption [109, 45, 58, 43, 47].

2We also call P’ as the refinement of P.
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Example 4.2.2. Consider the following input-output example in list manipulation:

€in : [74,39,40,53,89,10] — o : [78,80, 106]

We use the length of the list as the abstract domain [45]. Thus, the partial program
P: reverse(map(e;,, ©)) is infeasible (i.e., P [~ e). In other words, the program won’t

satisfy the given 10 example, no matter how we fill hole ¢, because:

e The map construct takes as input a function (yet to be determined by the synthe-
sizer) and applies it over every element of e;,, which yields an output list with equal

length to that of the input list e;,.

e The reverse construct reverses the order of elements of its input, which makes no

changes to its length; thus, the output list has the same length with the input list.

e Since the output returned by reverse does not have the same length as the desired
output e,,;, we derive an inconsistency, i.e., size(e;,) == size(ep) A size(e;,) ==

6 A size(eg) == 3 is UNSAT.

Statistical Model We consider a weakly supervised statistical model m [51] used to
prioritize the search order. Given a visualization I and its query @), the model directly

assigns probabilities w(A|I, Q) to every candidate answer A € A.

Rendering Visualization as Table For simplicity of the presentation, we will repre-
sent a visualization by its equivalent table format, which can be manipulated by existing
DSLs for data wrangling or relational algebra. In particular, given a visualization I, we

leverage an off-the-shelf procedure [56] to convert I into its tabular format. Please refer

to for more details.
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opinion )
B Improve [ Remain the same [l Worsen Country Improve Worsen Remain the same

Brazil 84 5 12

=) China 83 2 9

Japan 18 33 49

0 20 40 60 80 100 us 52 20 26
percentage =

Figure 4.4: Example tables showing how one can derive similar programs to get
conflicting outputs.

4.2.2 Introspective Program Synthesis

In this section, we state the problem of introspective program synthesis, as well
as an overview of our proposed approach. At a higher level, our approach aims at
boosting the performance of deep learning models in visualization question answering
by explaining their predictions using programs and performing consistency refinements
over the explanations, where we use explanations, partial programs, or abstract programs
interchangeably. Because mainstream weakly supervised models that directly predict
answers rather than generating intermediate logical forms, it is non-trivial for human
beings to understand how the decisions are made and provide potential improvements.
Our approach automates such a task by synthesizing and refining the answers using
program synthesis. This makes our problem different from a typical PBE setting, where
our specification is noisy in that 1) not all the predictions are correct, and 2) predictions

may conflict with each other.
Example 4.2.3. [Figure 4.4] (right) shows a visualization query, where the user asks:
“Which country has highest Improve value?”

which expects the ground truth reasoning process to be similar to:

project(aggregate(I, null, max, ¢), ["Country"])
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Figure 4.5: System workflow in POE.

where different hole fillings for ¢ will result in different answers, namely “Brazil” (when

o="“Improve”) or “Japan” (when o=“Worsen” or o="“Remain the same”).

Introspective Program Synthesis Given 1) a visualization question answering task
T = (I,Q) where I is the visualization and @) is the question in English, 2) a domain-
specific language L = (V, 3, R, S), and 3) a weakly supervised deep learning model 7 that
predicts top-k answers A = w(I, Q), the goal of introspective program synthesis is to find

a complete program P such that S = P and P optimizes the following objectives O:

P* = argmax Jr (P) = arg maxz 0,-0(1,Q, A, P),
P P
(11
where P* is the optimal program, J is a cumulative term of weighted objectives o € O.
In particular, we leverage objectives O to solve a multi-model synthesis problem where
O encodes 1) consistency properties among three parties, namely, the visualization, the

question, and the program, and 2) naturalness of the program.
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Key Insight Given a weakly-supervised deep learning model 7 trained from a large
corpus, POE starts from the top-k answers of 7. Our observation on many deep learn-
ing models indicates that, even though the model’s top predictions may look different
and sometimes may not even contain the correct answer, they share inherent semantics
through implicit reasoning processes, which establish certain confidence drew from the
training data. Therefore, our key insight is to unravel the implicit reasoning process by
decompiling the answers of 7 while resisting fine-grained details that are error-prone due

the limitation of noisy data.

Example 4.2.4. As shown in [Figure 4.4] given an question:

“Which country has highest Improve value?”

according to the above key insight, the following ordered predictions will be proposed by

an off-the-shelf deep learning model [51]:
“Brazil”, “Japan”, “China”, “U.S.”, ...

since the first three answers can be explained by the following partial program:

project(aggregate(I, null, ¢, ¢), ["Country"])

while the answer of “U.S.” can not be obtained because none of its values of the three
opinions aligns with the maximum or minimum value which the program is able find.
Thus, “Brazil”, “Japan” and “China” share some inherent similarity from the perspective

of how they are reasoned, even though they look unrelated on the surface.

System Overview [Figure 4.5 shows the system workflow of POE. Specifically, given
a DSL L, a visualization I, and a question (), POE first collects the top-k answers by
querying the deep learning model 7 with the visualization task. Due to the noisiness of
the answers, they will be sent to the abstract synthesis module to interpret the implicit

reasoning process behind the answers.
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Figure 4.6: Different granularities that affect the algorithm search space. An in-
put-output pair is denoted by a triangle.
Abstract Synthesis Given the top-£ noisy answers from the deep learning model as
well as a DSL L for generating visualization query programs, the abstract synthesis mod-
ule performs a relazed version of deduction over the noisy answers to quickly converge to
a roughly feasible search space, which is represented by a set of partial /abstract programs

P. We defer a detailed discussion of abstract synthesis to [Section 4.3]

Optimal Refinement Since each abstract program P € P can not be concretely
executed to obtain the answer, POE further invokes the optimal refinement procedure
to generate a concrete program. In particular, the optimal refinement module is an
instance of optimal synthesis whose goal is to optimize several objectives ranging over
consistency among multiple parties as well as perplexity of the programs. Finally, the
module will interpret the optimized program and return the final answer. We defer a

detailed discussion of optimal refinement to
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4.3 Abstract Program Synthesis with Noisy Specifi-
cation

In this section, we describe a novel abstract synthesis algorithm that can efficiently

quantify the relevant search space given noisy specification from the deep learning model.

Intuition Due to the uncertainty of an off-the-shelf deep learning model, it may pro-
duce noisy answers that fail to capture the user intent. Therefore, before we generate the
precise answer, we first need to efficiently quantify relevant search space that explains
the outputs from the statistical model. However, this is quite challenging. As shown
in , given a set of input-output examples E, a naive way (at the left) is to
generate a coarse-grained abstract program ¢ that is consistent with all input-output
examples. However, this option is useless because the search space also includes a huge
amount of undesired programs. On the other extreme at the right, we can also perform
fine-grained synthesis by synthesizing a concrete program P per each input-output exam-
ple e € E. However, the fine-grained option has at least two drawbacks: first, it requires
invoking multiple instances of PBE (programming-by-example) tasks, which may not be
feasible for the end user. Second, such a fine-grained option may also lead to overfitting,

especially if none of the input-output examples matches the user intent.

Our Solution Our goal is to compute a set of abstract programs that achieve a good
balance between generality and specificness (The middle one in [Figure 4.6). In other
words, our abstract programs should be relatively specific to provide sufficient informa-
tion to derive the correct solution. In the meantime, they should also achieve certain
degree of generality with information that go beyond the current input-output examples.

We first introduce an auxiliary function that will be used by the abstract synthesis

83



POE: Program Synthesis for Neural Prediction Refinement Chapter 4

algorithm.

Definition 4.3.1. (Relaxed Feasibility) Given a partial program P as well as a set
of 10 examples F, we use the CountConsist function to count the number of examples

in I that is consistent with program P:

CoUNTCONSIST(P, E) = Z 1(P Ee)

VeeE

where 1 is the boolean predicate functionﬂ.

Example 4.3.1. Consider the table shown in [Figure 4.4] (right) as input, and the fol-

lowing partial program P:

project(aggregate(I, null, ¢, ¢), ["Country"])

For the given set of model predictions as outputs:
“Brazil”, “Japan”, “China”, “U.S.”

Invoking COUNTCONSIST(P, E') will return 3. Because only “U.S.” cannot be generated
by any derivations of the partial program, which makes P consistent with three out of

the four input-output examples.

Abstract Program Synthesis shows the high-level structure of our syn-
thesis algorithm, which takes as input a specification F that must be satisfied by the
synthesized program, a domain-specific language with syntax £, as well as a hyperpa-
rameter ¢ that balances the generality and specificness, which we denote as a balance
coefficient. The output of the ABSSYNTH procedure is either a set of partial/abstract

programs P in the DSL or |, meaning that there is no DSL program that satisfies F.

1 if A

3A boolean predicate function 1(A) is defined as 1(A4) = {0 oA
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Internally, our synthesis algorithm maintains a worklist data structures W. The
worklist WV is a set of abstract programs that will eventually be returned by the procedure.
In particular, the ABSSYNTH procedure initializes WW with a single root node labeled
with the start symbol S (line 2); thus, W initially contains an abstract program P that
represents any syntactically legal DSL program.

In each iteration of the while loop (lines 3-16), we pick an abstract program P from
W (line 5) and iteratively compute all possible refinements P’ using the production rules
defined by L (line 6). For each candidate refinement P*, we invoke the COUNTCONSIST
procedure to compute the number of examples N in F that is consistent with P* (line 7).
if n is greater than the threshold ¢, it means P* is still too abstract thus requires further
refinement. In this case, we add P* to the worklist W (line 9) so that the program gets
refined again in the near future. In the second case where n is no greater than ¢ (line 10),
it indicates that P* is too specific and may lead to overfitting. In this case, we include
P, which is the abstract program from which P* is refined, to the worklist W (line 11).
Finally, the algorithm terminates when the worklist W reaches a fixed-point (line 14).
In other words, for all programs P € W, any refinement on P will lead to programs that

are too specific (i.e., COUNTCONSIST(F', E) < q).

Example 4.3.2. Following [Example 4.3.1], for the same given IO examples,

iteratively finds out a set of feasible partial programs given the threshold ¢ = 3. We go

over the algorithm with a few concrete iterations:

1. The algorithm starts from a start symbol of hole W = {¢} and P = ¢, which is

feasible for all examples.

2. The algorithm derives P with well-typed production rules (line 6). For example,

one of the P* could be:

project (o)
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Algorithm 3 Abstract Synthesis with Noisy Specification

1:
2
3
4:
5
6
7
8
9

10:
11:

12:

Input: DSL £, IO Examples E, Balance Coeflicient ¢
Output: Set of Partial Programs P or L

procedure ABSSYNTH(L, E, q)

W « {Root(S)}
while true do
W W
W+ W —{P}
for P* e {P'|VYde £,P% P’} do
n < COUNTCONSIST(P*, E)
if n > ¢ then
W< WU {P*}
else if n < g then
W« WU {P}
if W =)W' then return W

which is also feasible for all the IO examples (line 7), i.e., n = 4. In this case, since

n > ¢, the above program is added to the worklist (line 8-9).

. The derivation continues until P becomes:

project(aggregate(I, null, ¢p, ©1), ["Country"])

From the previous example we know currently P satisfies only three of the 10
examples, i.e., n = 3, but not sure whether it can be further refined, so we add P

to the worklist and continue with the iteration.

. The algorithm attempts to fill ¢y with max, which yields:

project(aggregate(I, null, max, ¢1), ["Country"])

and finds out it’s only feasible for IO with outputs of “Brazil” and “Japan”, i.e.,

n = 2. In this case since n < ¢, the previous P (before derivation) is added.

5. The procedure continues until the worklist W reaches a fixed point. (line 14).
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4.4 Explanation Refinement via Optimal Program
Synthesis

In this section, we describe our algorithm for synthesizing the optimal explanations
that best match the consistency constraints implied between natural language questions
and visualizations. We first define a relational operator to formalize the optimal synthesis

problem:

Near-Synonym Linguistic Engine First, we assume access to a linguistic engine
that can specifically determine whether two linguistic units are near-synonyms [40], which
constitutes to one of the major constraints of triangle alignment. A call to the near-
synonym linguistic engine NSYN(r, s) € [0, 1] returns the degree of two linguistic units r
and s sharing common senses, where 1 indicates identical and 0 indicates irrelevant. In
other words, a near-synonym linguistic engine tells the “similarity”E] between linguistic

units, e.g., words, phrases, etc..

Example 4.4.1. Consider the following words: “high”, “highest”, “low”, we have:
NSyYN(“high”, “highest”) > NSYN(“high”, “low”)
which means “high“ is more similar to “highest” than “low”.

ILP Formulation A 0-1 Integer Linear Programming (ILP) consists of a set of linear
constraints C over boolean variables and an objective function c¢. The goal is to find an
assignment such that all constraints are satisfied and the value of the objective function

c is optimized.

4Note that similarity techniqes based on distributional hypothesis [50], e.g., word2vec [71] and
glove [83], are observably not suitable for distinguishing synonyms and antonyms.
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Definition 4.4.1. (0-1 Integer Linear Programming) The 0-1 ILP problem is de-

fined as follows:

min ¢ : chxj sit. C: /\Zaz}j%’ A b;,
i g

J
with A = {<,=,>}, z; € {0,1}, and coefficients ¢;, a; ;, and b; are all integers.

We formulate the problem of finding an optimal triangle alignment using 0-1 ILP.
Specifically, constraints C encode mappings M among entities from three parties: the
question @), the program P, and the visualization I. The objective function expresses
that we want to minimize the cost of the mappings. In what follows, we describe our

encoding in more detail.

Domains The domains contains entities from three parties. In particular, each question
() contains a set of linguistic units w € V,,, each visualization consists of a set of cells
t € V;, and each P has a set of holes h € V}, that need to be filled. Finally, we also have
a set of abstract programs P € Vp generated by [Algorithm 3] Formally, the triangle
alignments among entities from three parties are encoded as the conjunctions of the

following boolean variables:

Variables The variables in our 0-1 ILP formulation correspond to all possible mappings

among three parties:

e z!: the boolean variable indicates a one-to-one mapping from a linguistic unit w

from the question @ to a cell value ¢ from the data source (i.e., visualization).

e y!: the boolean variable indicates a one-to-one mapping from a hole h of an abstract

program to a terminal of cell value t. L.e., the hole h is filled with terminal .

e 2%: the boolean variable indicates a mapping from an abstract program P to a hole

h. In other words, 2% evaluates to 1 if hole h belongs to abstract program P.
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e u”: The boolean variable indicates the abstract program P (chosen from
rithm 3|) is used to derive the final solution.

Example 4.4.2. The optimal mapping for Explanation#2 from given the

following program P:

project(select(pivot(T, ¢p, ©1), ©2, ©3, ©4), ©5)
can be represented by the following variables:

Country

_ ‘Worsen _
country = true, x = true

most worse

Country __ Worsen __
Yos = true, Y, = true

Vi € {0,1,2,3,4,5}, 25 = true

o ul’ = true

Observe that the number of variables used in the encoding grows quadratically for
the number of words in the question () as well as the number of holes in the abstract
program. However, since the number of words and holes is usually small, our encoding

introduces a manageable number of variables in practice.

Constraints While the variables describe all possible mappings among entities from
different parties, not all mappings can occur simultaneously. For example, we must
enforce that any satisfying assignment to C corresponds to a mapping from entities in
visualization v to holes in P. Furthermore, types also impose hard constraints that
limit which variables in V' can be mapped to which ones in H. We enforce these hard

constraints by generating a system of linear constraints C as follows:

1. (Well-typed Terminals) If two parameters h € H and ¢ € T" are not compatible

due to their types, the boolean variables where these parameters occur are always
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set to 0.

y;, = 0 if the types of t and h are incompatible.

2. For each hole h € H, we impose that there is exactly one terminal ¢ that maps to
h:

VheVi, Y yh=1

vteVy

Effectively, these constraints enforce that any solution of C corresponds to a sur-

jective mapping.

3. In a similar way, we also impose that there is ezactly one abstract program P that

will be chosen:

Zupzl

VPEVp
Furthermore, each hole h can belong to exactly one abstract program p:

VheVi, Y =1

VPeVPp

4. For each entity t € V;, we impose that there is at most one mapping in the question
() that contains t:

VteV, Y al, <1

5. Finally, we ensure that a mapping only gets activated if its corresponding abstract

program P is chosen:

Yh e Vi,Vt eV, —yl +uf +25>1
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Example 4.4.3. Following and [Example 4.4.2] we can construct the corre-

sponding constraint system by defining the set of holes V}, and set of cell values V;, which

are given by:

Vi, ={<]i =0,1,...}, V; = {Country, opinion, ...}

Objective Function We borrow the notion of perplexity from information theory to
measure how common a candidate abstract program is observed. Given a program P,
assuming we have function PPL(P) that computes the perplexity of P using an off-the-
shelf statistical model, then the goal of the objective function ¢ in our ILP formulation is
to find an optimal alignment with the lowest cost and perplexity. Specifically, we define

the objective function ¢ as follows:

33— NSyN(w, 1) -al, + Y PPL(P)-u”.

weVy, teVy peVp
Each mapping has an associated cost using linguistic distances defined at the begin-
ning, and the perplexity score will bias the objective function to prefer more promising

candidates.

Example 4.4.4. Following [Example 4.4.3] suppose eventually we want to find out the

optimal explanation from the following two programs (denoted by P, and P,):

1 project(select(pivot(T, "opinion", "%"), "Worsen", eqmax, null), ["Country"])

2 project(select(pivot(T, "opinion", "%"), "Improve", eqmax, null), ["Country"])
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Note that the linguistic engine has the following returned scores:

NSyYN(Country, country) = 1,

NSyN(Worsen, most worse) = 0.6,

with other scores not mentioned omitted (since they are mostly shared between the two
programs and won't affect the final result), and the computed perplexity of both programs

are PPL(P;) = 3.93 and PPL(FP;) = 3.99. Both costs can be computed by:

cost(Py)=(1—1)-14 (1—0.6)-1+3.93 = 4.33,

cost(Py) = (1—=1)-1+(1—0)-1+3.94 =4.94.

Obviously P; has lower cost and the optimal synthesis will propose it as the optimal

candidate explanation.

4.5 Implementation

We have implemented the proposed framework in a tool called POE, which consists
of approximately 6,000 lines of Python code. POE is built on top of the TRINITY [69]
framework. In particular, our component specifications are expressed in
quantifier-free Presburger arithmetic. More specifically, we use a similar DSL for the
data wrangling domain and the same specifications considered in prior work [43]. The
linguistic engine is built using NLTK (with WordNet interface) [I5] and spaCy [73]. In

what follows, we elaborate other key implementation details.
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Deep Learning Model Given a visualization query in English as well as a table that
corresponds to the visualization, POE incorporates the pre-trained weakly supervised
model from the TAPAS tool, to generate the top-k answers as the starting point of the

system.

Rendering Visualization as Table Similar to VISQA [56] and VISR [108], PoOE
also needs to convert a visualization into its table representation, with additional visual
properties attached, such as colors, shapes, etc.. In particular, POE invokes the Vega-
Lite [93] visualization tool to render the visualization from the benchmark specification
with extra accessible rich internet application (ARIA) attributes [104], and retrieves them
by parsing together with additional visual properties as a compact table. This reduces
the complex visualization to its succinct tabular format that is amendable to existing

data wrangling DSL.

Other Optimizations Our implementation performs extra optimizations in addition

to the algorithms presented in [Section 4.3 and [Section 4.4] First, following the Occam’s

razor principle, POE explores abstract programs in increasing order of size. In the mean-
time, if the size of the candidate answers is a large number k, POE may end up exploring
many abstract programs. In practice, we have found that a better strategy is to exploit
the inherent parallelism of our algorithm. Specifically, POE uses multiple threads to
search for abstract programs for different answers.

Our deduction engine is inspired by prior works [43], [45], whose core procedures in-
clude: (1) every DSL construct is attached with its abstract semantics in form of first-
order formulas describing the input-output behavior, (2) the semantics of a partial pro-
gram is computed by conjoining the side effects of each individual construct, and (3) an

SMT query is issued to encode the consistency between the abstract semantics and the
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user intent via implication.

Motivated by the NEO system [45], our implementation of COUNTCONSIST performs
an additional optimization over [Algorithm 3} Since different partial programs may share
the same SMT specification, ends up querying the satisfiability of the same
SMT formula multiple times. Thus, our implementation memoizes the result of each
SMT call to avoid redundant Z3 queries.

Finally, since using a “universal DSL” for all visualization queries may significantly
increase the search space of the synthesizer, motivated by the LIFT framework [3], POE
will refine the DSL constructs on-the-fly and filter out irrelevant or redundant constructs
with respect to the query and the visualization. In particular, POE starts with a smaller
DSL with constants that are relevant to the question, and to ensure completeness it
gradually increases the DSL constructs on-the-fly if it fails to find any feasible candidate

programs using the current DSL.

Perplexity Computation Recall that in [Section 4.4] our optimal synthesis relies on
computing the perplexity of each candidate abstract program. Because perplexity mea-
surement of an abstract P requires a background probability model of P, we adapt a
similar statistical model from the MORPHEUS system [43], which uses a 2-gram model
trained on 15,000 code snippets collected from StackOverflow. Since POE’s search strat-
egy always starts with an abstract program P derived from abstract synthesis, PPL(P)

is weighted slightly higher than NSYN(P) in order to balance the objective function.

4.6 FEvaluation

In this section, we describe the results for the experimental evaluation, which is

designed to answer the following key research questions:
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1. RQ1 (Performance): How does POE compare against state-of-the-art tools on

visualization queries?
2. RQ2 (Effectiveness): Can POE rectify wrong answers proposed by other tools?

3. RQ3 (Explainability): Does POE synthesize explanations that well capture the

question intentions and make sense to human end-users?

4. RQ4 (Ablation): How significant is the benefit of abstract synthesis (Section 4.3))
and optimal alignment (Section 4.4])7

Benchmarks We evaluate POE on a total number of 629 visualization question-
answering tasks used in VISQA [56]. Specifically, these tasks contain visualizations col-
lected from different real-world data sources and non-trivial questions in natural language
proposed by real users from Mechanical Turk. The types of questions cover including

retrieval, aggregation, assertion, and comparison, etc.

Experimental Setup To evaluate the effectiveness of POE, we choose two state-of-
the-arts, VISQA and TAPAs [5I]. In particular, TAPAS leverages a weakly supervised
model and provides an end-to-end way to directly predict the answer without explicitly
generating logic forms, where POE collects top-30 answers from TAPAS as input to its
abstract synthesis component. VISQA is an automatic pipeline for answering natural
language questions about visualizations and it builds on top of Sempre [13], a question-
answering system for relational data tables.

All experiments are performed on Amazon EC2 platform with a t3a.xlarge instance.

The time limit for a single task is 5 mins. We set the balance coefficient ¢ = 3 by defaultP}

5Note that in practice ¢ may need to be adjusted dynamically depending on the quality of candidate
programs derived from abstract synthesis. For example, for some benchmarks the statistical model may
not produce enough candidate answers and ¢ needs to shrink accordingly so as to prevent generating
programs that are too abstract.
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TaPas 229 (36%) tool
i @ PoOE(top-1)
VisQA 274 (44%) ® PoE(top-3)
POE(top-1) 370 (59%) @ POE(top-5)
@ TaPas
POE(top-3) 397 (63%) ® VisQA
POE(top-5) 402 (64%)

200 250 300 350 400 450
#solved

Figure 4.7: Performance comparison between the original pipeline from VISQA (base-
line), TAPAS and POE.

4.6.1 Comparison against State-of-the-Arts

To answer RQ1, we compare POE against VISQA and TAPAS on all the 629 VISQA
benchmarks discussed earlier. We measure the total number of benchmarks solved, which
is shown in As we can see, within given time limit, POE solves 370 (59%)
benchmarks, whereas VISQA solves 274 (44%) and TAPAS solves 229 (36%). By com-
parison, POE solves 11% more benchmarks than VISQA and 23% than TAPAs.

Additionally, we show more details of the comparison with respect to different ques-
tions types, as shown in POE solves on average 35% (resp. 25%) more
benchmarks across different types of questions compared to VISQA (resp. TAPAS), and
has a lower variance on performance of different types of questions, whereas TAPAS only
supports and is good at a restricted portion of questions. Thus, we believe these results

answer RQ1 in a positive way.

4.6.2 Benefits of Optimal Alignment and Abstract Synthesis

To study the effectiveness of abstract synthesis and optimal alignment, we further

perform an ablation study in which we compare POE against two of its other variants:

e POEY: This variant only performs optimal synthesis on the full search space.
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Table 4.1: Comparison on number of benchmarks solved by different tools across

different types of questions.

question type | total (b\; lsse(?iﬁe) TAPAS ( t}())g—El)
rotrieval 183 101 98 123
(29%) (55%) (54%) | (67%)
. 87 50 0 71
COMPAMSOLL | (14%) (57%) (0%) | (82%)
. 253 92 119 161
aggregation |- ygory | (36%) | (47%) | (64%)
other 106 31 12 15
(17%) (29%) (11%) | (14%)
total 629 274 229 370
(100%) (44%) (36%) | (59%)

Table 4.2: Comparison between TAPAS and different ablated variants of POE.

’ variant ‘TAPAS‘

Poe | Poe” | Por® |

solved 229 370 194 357
delta (%) | (+0%) | (+23%) | (-5%) | (+21%)
Zrtimeout _ 36 586 58

e PoE™: This variant only performs abstract synthesis followed by an enumerative

search to pick the first feasible concrete program.

The results from this evaluation are summarized in with given timeout

of 5 mins. As we can see, without abstract synthesis procedure, POE® is still able to

solve a certain number of benchmarks (357) since the consistency constraints provide

very strong hints that greatly reduce the search space. While for POE* without optimal

synthesis, majority of the synthesis calls are timed out. Without prioritization provided

by optimal synthesis, POE* finds it difficult to reach the optimal solution quickly even

after search space pruning. The full version of POE combines both the benefits of the

abstract synthesis and optimal synthesis and thus reaches the best results among the

variants. Thus, we conclude that the ablation study provides positive evidence for RQ4

and shows the necessity of both procedures.
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4.6.3 Evaluation on Effectiveness

To answer RQ2, we specifically measures the flip rate of POE over TAPAS, i.e., the
percentage of the benchmarks that POE can rectify on top of TAPAS. We compute flip

rate of tool A over tool B according to the following equation:

A, |SUCC(A)N FAIL(B)|
FLIP(E) = |FAIL(B)| ’

where SUCC' returns the set of successfully solved benchmarks and F'AIL returns the
set of failed benchmarks. Our results show that POE has a flip rate of 39% over TAPAS,
which means it can successfully “fix” 39% of the benchmarks that TAPAS fails to solve.
In particular, for retrieval (resp. aggregation, comparison) type of questions, the flip rate
is 36% (resp. 37%, 78%). In summary, we believe our proposed techniques in POE are

effective and thus RQ2 is answered in a positive way.

4.6.4 A User Study on Explainability

To answer RQ4, we carry out a simple user study on a comparison of the usability
and explainability between TAPAS and POE. The design of the user study is inspired by
the one carried out by VISQA [50]. Specifically, 3 students with elementary background
of data analytics are asked to use POE and TAPAS and perform the following evaluations

given real-world visualizations (and their corresponding parsed tables):

e Task 1 (Usability): Ask a question regarding the given visualization and evaluate

which tool returns the accurate desired answers.

e Task 2 (Explainability): Inspect the returned answer together with the expla-
nation generated by POE and tell whether the answer is well explained and aligns

with the user intent.
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In particular, 3~5 individual questions were asked in each task, and the participants
were asked to make a choice between POE and TAPAS for each question based on the
usability and explainability of the answers given by both tools.

As a result, the participants indicate in our results that POE is demonstrating better
usability than TAPAS in that it solves more questions asked by users. Out of all the
visualization question answering tasks they issued, POE finds the correct explanations
that well match their original intents of the questions in majority of the cases. Thus, for
RQ3, we believe the user study provides positive evidence about the usability of POE

and explainability of the explanations generated.

4.6.5 Discussion

Like any other techniques, our approach also has its own limitations. Based on the
result in we manually inspect all these cases and notice that the issue is

caused by the following reasons:

Timeout POE uses a timeout of 5 mins similar to previous works [45], [43]. As a result,

5% of difficult benchmarks do not terminate within the given timeout.

Incomprehensible Question Since the natural questions from VISQA benchmarks
are obtained from Amazon Mechanical Turk, some of the questions are found to be

incomprehensible, e.g.:
o “What is highestt change in income?” — typo.

e “In which year investors of all age groups took bigger risks?” — “bigger” should be

“biggest”.

o “Who has roughly 5 votes?” — factual error; no one has 5 votes in the visualization.
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Such benchmarks create difficulties for all of the tools we experiment on.

Fallback Strategy POE starts its core synthesis algorithm based on the top-k answers
from TAPAS. In some cases, the top-k answers may all be wrong and do not provide any
hints to derive the correct solution. Then POE has to leverage a simple fallback strategy

to dynamically increase the size of k, which may lead to timeout.

Limitation of NLP Modules Some of the benchmarks are found to be also challeng-

ing for the current NLP techniques that the tools depend on. For example:

e “How many countries in Asia will have their economy improved based on major-
ity votes?” — requires a knowledge base backend for inferring the implication of

“countries in Asia’”.

e “How many teams are in the Central Division?” — requires alignment with entities

from the visualization to the range of “Central Division”.

o “What month has the least recorded weather?” — requires aligning a implicit sum-

mary of more than one weather types to represent the weather before aggregation.

Despite the aforementioned limitations, our core technique is not restricted to visu-
alization tasks. We anticipate that a similar idea can be instantiated to other tasks with
multi-layer specifications (e.g., text, table, code, visual objects, etc.) that combine a
top-down search procedure with an off-the-shelf statistical model. For instance, video
understanding, structural-object queries, data wrangling, etc.

There are various directions that Poe can be extended to handle a broader spectrum
of visualization queries. For example: 1) An extended version of the DSL that considers

more data wrangling operations that cover more long-tailed queries in our benchmark;
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2) A more sophisticated linguistic engine, 3) A better deep learning model trained from

a better dataset.

4.7 Summary

In this chapter, we proposed a new methodology for synthesizing programs from nat-
ural language and applied it to the problem of answering visualization queries. Starting
with a few tentative answers obtained from an off-the-shelf statistical model, our approach
first invokes an abstract synthesizer that generates a set of sketches that are consistent
with the answers. Then we design an instance of optimal synthesis to complete one of
the candidate sketches by satisfying common type constraints and maximizing the con-
sistency among three parties, i.e., natural language, the visualization, and the candidate
program.

We implement the proposed idea in a system called POE that can answer visualization
queries from natural language. Our method is fully automated and does not require
users to know the underlying schema of the visualizations. We evaluate POE on 629
visualization queries and our experiment shows that POE outperforms state-of-the-arts

by improving the accuracy from 44% to 59%.
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Related Work

In this chapter, we discuss prior research that is most related to the addressed topics
of this dissertation, including a long line of work on program synthesis, deduction-based

reasoning and machine learning, as well as cross-cutting techniques.

5.1 Program Synthesis

Over the past decade, there has been significant interest in automatically synthesizing
programs from high-level expressions of user intent [99, 49| 85 [6], 18, 47, 86, 54]. Some
of these techniques are geared towards computer end-users and therefore utilize informal
specifications such as input-output examples [49] [86, 106], natural language [113], 115, 53]
94], or a combination of both [24, 27]. On the other hand, program synthesis techniques
geared towards programmers often utilize additional information, such as a program
sketch [99], [103], 42} [76] or types [85], [72] in addition to test cases [44] [65] or logical
specifications [103], [18]. While techniques proposed in this dissertation can, in principle,
be applied to a broad set of specifications, the particular featurization strategy we use in

our implementation is tailored towards input-output examples.
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Programming by Example Our techniques are related to a line of work on
programming-by-example (PBE) [49, 0], 43, 112}, 106, 118]. PBE has been widely applied
to different domains such as string manipulation [49, [10], data wrangling [43| [112], and

SQL queries [106], T18]. Among these techniques:

e MORPHEUS [43] is directly related to the data wrangling client to which M ARS is in-
stantiated. However, unlike MORPHEUS that is specialized to table transformation,
the techniques in MARS can be generalized to other synthesis tasks. Compared to
existing PBE systems, MARS proposes a novel neural architecture that can learn

user preferences from natural language.

e NEO [45] reflects the conflict-driven learning philosophy shared by the core algo-
rithm in CONCORD. While NEO manages the knowledge base following an explicit
style of deductive reasoning, CONCORD extends and transplants it to a machine
learning model that learns to both prune and propose, thus also reducing extra

overheads caused by management. We defer a detailed related work discussion to

Section 5.2l and [Section 5.3l

e POE’s problem setting extends PBE notion by permitting the violation of provided
examples, due to the nature of the noisy predictions generated by machine learning
models. As a result, POE also shares similar objectives as MARS as they both

consider extra layers of specification for determining optimal results.

Programming by Natural Language Programming-by-natural-language (PBNL)
is another paradigm [38] 90 113| 87, 57] that is related to our techniques. Specifically,
SQL1ZER [I13] takes input as natural language and generates its corresponding query
in SQL. There are other PBNL systems that translate natural language into simple

commands in smartphone [57], IFTTT scripts [87], and scripts for text editing [38], O0].
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Compared to previous PBNL systems, our neural architecture can reasonably capture the
user intent even in the presence of low quality training data. Furthermore, in addition
to natural language, the multi-layer specification in MARS also accepts input-output
examples as hard constraints which provide a strong guarantee in correctness. Meanwhile,
natural languages also play an important role in POE’s encoding of consistency metric
between the queries, program constructs and visualizations, as they reflect user intents

in synthesis problems.

Interactive Program Synthesis The goal of our techniques also aligns with tools
in interactive program synthesis [82, O, [I7], where the goal is to iteratively refine user
intent through incorporating user decision in the synthesizer loop. While MARS and
POE leverages natural language to capture user intent, we believe the idea of interactive
synthesis is complementary to our techniques and can further refine the distribution of

the machine learning model.

5.2 Deduction-Based Reasoning

There are many techniques that utilize logical reasoning to perform the core search-
ing and pruning for program synthesis, where the problem is usually formulated a
constraint solving instance. Techniques such as conflict-driven learning [14], [117] and
counterexample-guided inductive synthesis loop (CEGIS) [4], [60, O8] are closely related

to the techniques proposed in this dissertation.

Deduction-Based Pruning The techniques from this dissertation are built upon
a line of prior work on using deduction to prune the search space of programs in a
DSL [R5, 43, 45], 109] [47]. Some of these techniques utilize type-information and type-

directed reasoning to detect infeasible partial programs [85, 47, [44] [78 [48]. On the
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other hand, other approaches use some form of lightweight program analysis to prune
the search space [109 43| 45]. Concretely, BLAZE [109] uses abstract interpretation
to build a compact version space representation capturing the space of all feasible pro-
grams [109]; MorPHEUS [43] and NEO [45] utilize logical specifications of DSL constructs
to derive specifications of partial programs and query an SMT solver to check for feasi-
bility; SCYTHE [106] and VISER [108] use deductive reasoning to compute approximate
results of partial programs to check their feasibility. Our techniques learn from deduction
feedback to improve search efficiency — the deductive reasoning engines used in our im-
plementation for MARS, CONCORD and POE are similar to the latter category; however,
they can, in principle, be used in conjunction with other deductive reasoning techniques

for pruning the search space.

Learning from Failed Synthesis Attempts The techniques proposed in this dis-
sertation can utilize feedback from the deduction engine in the form of other infeasible
partial programs. This idea is known as conflict-driven learning and has been recently
adopted from the SAT solving literature [14, [117] to program synthesis [45]. Specifically,
NEO uses the unsat core of the program’s specification to derive other infeasible partial
programs that share the same root cause of failure, and we use the same idea in our
implementation of the deduction engines. While we use logical specifications to infer
other infeasible programs, there also exist other techniques (e.g., based on testing [110])

to perform this kind of inference.

5.3 Machine Learning

There has been significant interest in automatically synthesizing programs given high-

level specifications of different granularity [99] 49| 85, 6], (18], [47, [86), [54], such as program
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sketches [99] 103, 42], types [85] [72], logical forms [103], 18] and natural languages [27,
24, 113, [115], 94]. Recently, machine learning is extensively used for better prioritization
of programs for search-based approaches [6], [12], 27, 24, 45]. On the other end, program
synthesis techniques and formal methods are also used to provide rich and generalizable
feedback for machine learning models [95] [8, 28] [5, 120]. For example, SQLI1ZER [113]
performs program repairs based on type-directed program synthesis; PROBE [§] utilizes
guided bottom-up search to bootstrap machine learning model for synthesis; METAL [90]
uses graph-based models of reinforcement learning for synthesis with rewards from SMT

solvers.

Machine Learning for Program Synthesis The neural architecture in MARS is
relevant to two major directions for applying machine learning to program synthesis. In
particular, The first line of work is to directly generate programs from inputs in the form
of natural language or input-output examples [74} [75], which is inspired by the seq2seq
model in machine translation. Although we also incorporates a seq2seq model as part of
the neural architecture, we further leverage the aprior: algorithm for mining association
rules to mitigate the quality of training data.

The second approach [70] incorporates statistical information to guide a program
synthesizer. In other words, a statistical model is used to suggest the most promising
candidates a synthesizer has to explore. For instance, DEEPCODER [6] uses a deep neural
network that can directly predict programs from input-output examples. The MORPHEUS
tool [43] adopts an n-gram model for synthesizing data wrangling tasks. Similarly, the
SLANG [88] tool integrates an n-gram model for code completion. Raychev et al. [89]
extends the previous approach to obtain a statistical model that can guide a synthesizer in
the presence of noisy examples. The NEO [45] synthesizer generalizes previous approaches

by incorporating an arbitrary statistical model as its “decider” to guide the enumerative
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search. While MARS proposes a novel neural architecture to suggest the most promising
candidates, it can also leverage advanced techniques from previous work, such as pruning
infeasible candidates through deduction [43] and conflict-driven learning [45].

Another other approach from this dissertation, CONCORD, is also related to a long
line of work on using machine learning for program synthesis. Among these techniques,
some of them train a machine learning model (typically a deep neural network) to directly
predict a full program from the given specification [74], [75, 27, [39]. Many of these ap-
proaches are based on sequence-to-sequence models [101], sequence to tree models [115],
or graph neural networks [94] commonly used in machine translation.

A different approach, sometimes referred to as learning to search, is to train a statisti-
cal model that is used to guide the search rather than directly predict the target program.
For example, DEEPCODER [6] uses a deep neural network (DNN) to predict the most
promising grammar productions to use for the given input-output examples. Similarly,
R3NN [80] and NGDS [55] use DNNs to predict the most promising grammar productions
conditioned on both the specification and the current partial program. In addition, there
has been work on using concrete program executions on the given input-output examples
to guide the DNN [25, 107]. Our technique for pretraining the initial policy network is
based on the same ideas as these supervised learning approaches; however, their initial
policies do not change during the synthesis algorithm, whereas we continue to update
the policy using RL.

While most of the work at the intersection of synthesis and machine learning uses su-
pervised learning techniques, recent work has also proposed using reinforcement learning
to speed up syntax-guided synthesis [21], 06, [66], 62]. These approaches are all on-policy
and do not incorporate feedback from a deduction engine. In contrast, in our problem
domain, rewards are very sparse in the program space, which makes exploration highly

challenging in a on-policy learning setting. CONCORD addresses this problem using off-
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policy RL to incorporate feedback from the deduction engine. Our ablation study results
demonstrate that our off-policy RL is able to scale to more complex benchmarks.
Finally, different from prior work [113| 56] that rely on a semantic parser whose train-
ing data is difficult and expensive to obtain, the other approach from this dissertation,
POE, focuses more on interpreting and rectifying the direct answers from weakly super-
vised machine learning models by synthesizing programs as explanations. Such models

become increasingly popular due to the ease of obtaining training data.

Reinforcement Learning for Formal Methods There has been recent interest
in applying reinforcement learning (RL) to solve challenging PL problems where large
amounts of labeled training data are too expensive to obtain. For instance, Si et al. use
graph-based RL to automatically infer loop invariants [05], Singh et al. use @Q-learning
(a different RL algorithm) to speed up program analysis based on abstract interpreta-
tion [97], Dai et al [35] uses meta-reinforcement learning for test data generation, and
Chen et al. [22] uses RL to speed up relational program verification. However, these ap-
proaches only use RL offline to pretrain a DNN policy used to guide search. In contrast,
CONCORD performs reinforcement learning online during synthesis. Bastani et al. has
used an RL algorithm called Monte-carlo tree search (MCTS) to guide a specification

inference algorithm [11]; however, their setting does not involve any kind of deduction.

Model Interpretability Despite their popularity, machine learning models are often
applied as black boxes. How to interpret the predicted results remains an important, yet
challenging task. Ribeiro et al. [91] proposed a method to explain models by present-
ing representative individual predictions and their explanations. In deep learning, there
are efforts to perturb the input to a neural network and visualize its influence to the

output. Clark et al. [34] analyzed the attention mechanisms of pre-trained models and

108



Related Work Chapter 5

demonstrated syntactic information captured in these models. Petroni et al. [84] consid-
ered language models as knowledge bases. However, none of them can achieve rigorous

explanation like what a synthesized program (e.g. generated by POE) does.

Visualization / Table Question Answering Semantic parsing of natural language
queries to SQL has attracted increasing interest since the release of datasets like Wik-
iSQL [119] and Spider [I16]. Their leaderboards have been frequently updated by newly
developed encoder and decoder architectures. For example, RAT-SQL [105] included
schema encoding, schema linking, and feature representation in a unified relation-aware
self-attention framework. Both autoregressive AST-based top-down (e.g., Yin and Neu-
big [114]) and bottom-up parsers (e.g., SMBOP [92]) have been proposed. Most of the
those studies assume the existence of datasets that map natural language queries to logic
forms or intermediate representation, which could be used to train encoders and decoders.
Recently, weakly supervised approaches like TAPAS [51] that do not rely on annotating
logic forms, can be trained on larger corpora, thus outperform state-of-the-arts. Our
evaluation of POE shows that our introspective synthesis approach that reconciles the
power of symbolic reasoning and machine learning can significantly push the boundary

of visualization queries.
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Chapter 6

Conclusion

This dissertation proposes a synergistic framework that bridges statistical and logical
reasoning for program synthesis. We presents the key insights of the framework via three
aspects: the interface, the core and the extent. The interface, encodes user-provided
specification of multi-modalities into machine-readable constraints, via a hybrid design
that exploits the power of both statistical and logical reasoning. The core, resides with
a synergistic solution that tightly couples statistical and logical reasoning in program
synthesis, where logical feedback is seamlessly incorporated into the search of statistical
learning via the new paradigm of deduction-guided reinforcement learning. The extent,
shows the potential of the framework by connecting the interface and core with broader
interdisciplinary scenarios, where we demonstrates its power by refinement of deep learn-
ing model’s predictions via program synthesis. We have implemented the framework in
three tools, namely MARS, CONCORD and POE, and we show in evaluations that they
are effective for the core task of program synthesis, as well as in improving experience for
end-user programming via broaden expressiveness, enhanced explainability and natural

interactivity.
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